UNIT 6 DEMAND ESTIMATION AND FORECASTING

Objectives

By studying this unit, you should be able to:

- **identify** a wide range of demand estimation and forecasting methods;
- **apply** these methods and to understand the meaning of the results;
- **understand** the nature of a demand function;
- **identify** the strengths and weaknesses of the different methods;
- **understand** that demand estimation and forecasting is about minimizing risk.

Structure

6.1 Introduction
6.2 Estimating Demand Using Regression Analysis
6.3 Evaluating the Accuracy of the Regression Equation - Regression Statistics
6.4 The Marketing Approach to Demand Measurement
6.5 Demand Forecasting Techniques
6.6 Barometric Forecasting
6.7 Forecasting Methods: Regression Models
6.8 Summary
6.9 Key Words
6.10 Self-Assessment Questions
6.11 Further Readings

6.1 INTRODUCTION

The first question which arises is, what is the difference between demand estimation and demand forecasting? The answer is that estimation attempts to quantify the links between the level of demand and the variables which determine it. Forecasting, on the other hand, attempts to predict the overall level of future demand rather than looking at specific linkages. For this reason, the set of techniques used may differ, although there will be some overlap between the two. In general, an estimation technique can be used to forecast demand but a forecasting technique cannot be used to estimate demand. A manager who wishes to know how high demand is likely to be in two years’ time might use a forecasting technique. A manager who wishes to know how the firm’s pricing policy could be used to generate a given increase in demand would use an estimation technique.

The firm needs to have information about likely future demand in order to pursue optimal pricing strategy. It can only charge a price that the market will bear if it is to sell the product. On one hand, over-optimistic estimates of demand may lead to an excessively high price and lost sales. On the other hand, over-pessimistic estimates of demand may lead to a price which is set too low resulting in lost profits. The more accurate, information the firm has, the less likely it is to take a decision which will have a negative impact on its operations and profitability.
The level of demand for a product will influence decisions, which the firm will take regarding the non-price factors that form part of its overall competitive strategy. For example, the level of advertising it carries out will be determined by the perceived need to stimulate demand for the product. As advertising expenditure represents an additional cost to the firm, unnecessary spending in this area needs to be avoided. If the firm’s expectations about demand are too low it may try to compensate by spending large sums on advertising, money which in this instance may be, at least, partly wasted. Alternatively, it may decide to redesign the product in response to this, thus incurring unnecessary additional costs in the form of research and development expenditure.

In the previous unit, demand analysis was introduced as a tool for managerial decision-making. For example, it was shown that knowledge of price and cross elasticities can assist managers in pricing and that income elasticities provide useful insights into how demand for a product will respond to different macroeconomic conditions. We assumed that these elasticities were known or that the data were already available to allow them to be easily computed. Unfortunately, this is not usually the case. For many business applications, the manager who desires information about elasticities must develop a data set and use statistical methods to estimate a demand equation from which the elasticities can then be calculated. This estimated equation could then, also be used to predict demand for the product, based on assumptions about prices, income, and other factors. In this unit the basic techniques of demand estimation and forecasting are introduced.

6.2 ESTIMATING DEMAND USING REGRESSION ANALYSIS

The basic regression tools discussed in Block 1 can also be used to estimate demand relationships. Consider a small restaurant chain specializing in Chinese dinners. The business has collected information on prices and the average number of meals served per day for a random sample of eight restaurants in the chain.

These data are shown below. Use regression analysis to estimate the coefficients of the demand function $Q_d = a + bP$. Based on the estimated equation, calculate the point price elasticity of demand at mean values of the variables.

<table>
<thead>
<tr>
<th>City</th>
<th>Meals per Day (Q)</th>
<th>Price (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>190</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>130</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>190</td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>140</td>
</tr>
</tbody>
</table>

Solution: The mean values of the variables are $\bar{Q} = 100$ and $\bar{P} = 160$. The other data needed to calculate the coefficients of the demand equation are shown below.
Demand and Revenue Analysis

<table>
<thead>
<tr>
<th>City</th>
<th>$Q_i - Q$</th>
<th>$P_i - P$</th>
<th>$(P_i - \bar{P})^2$</th>
<th>$(P_i - \bar{P})(Q_i - \bar{Q})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
<td>2</td>
<td>400</td>
<td>-20</td>
</tr>
<tr>
<td>3</td>
<td>-15</td>
<td>3</td>
<td>900</td>
<td>-45</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>-2</td>
<td>400</td>
<td>-20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>-3</td>
<td>900</td>
<td>-60</td>
</tr>
<tr>
<td>6</td>
<td>-10</td>
<td>3</td>
<td>900</td>
<td>-30</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-2</td>
<td>400</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\Sigma(P_i - \bar{P})^2 = 4000 \quad S(P_i - \bar{P})(Q_i - \bar{Q}) = -1750 \]

As shown, the sum of the $(P_i - \bar{P})^2$ is 4000 and the sum of the $(P_i - \bar{P})(Q_i - \bar{Q})$ is -1750. Thus, using the equations for calculating \hat{b} and \hat{a},

$$\hat{b} = -\frac{175}{40} = -0.4375 \quad \text{and} \quad \hat{a} = 100 - (.4375)(160) = 170.$$

Hence, the estimated demand equation is $Q_d = 170 - 4.375*P$. Recall from the previous unit that the formula for point price elasticity of demand is $Ep = (dQ/dP)(P/Q)$. Based on the estimated demand function, $dQ/dP = -.4375$. Thus, using the mean values for the price and quantity variables, $Ep = (-.4375)(160/100) = -0.7$.

6.3 EVALUATING THE ACCURACY OF THE REGRESSION EQUATION - REGRESSION STATISTICS

Once the parameters have been estimated, the strength of the relationship between the dependent variable and the independent variables can be measured in two ways. The first uses a measure called the coefficient of determination, denoted as R^2, to measure how well the overall equation explains changes in the dependent variable. The second measure uses the t-statistic to test the strength of the relationship between an independent variable and the dependent variable.

Testing Overall Explanatory Power: Define the squared deviation of any Y_i from the mean of Y [i.e., $(Y_i - \bar{Y})^2$] as the variation in Y. The total variation is found by summing these deviations for all values of the dependent variable as total variation = $S(Y_i - \bar{Y})^2$

Total variation can be separated into two components: explained variation and unexplained variation. These concepts are explained below, for each X_i value, compute the predicted value of Y_i (denoted as \hat{Y}_i) by substituting X_i in the estimated regression equation:

$$\hat{Y}_i = \hat{a} + \hat{b}X_i$$

The squared difference between the predicted value Y_i and the mean value \bar{Y} [i.e., $(\hat{Y}_i - \bar{Y})^2$] defined as explained variation. The word explained means that the deviation of Y from its average value is \bar{Y} the result of (i.e., is...
explained by) changes in X. For example, in the data on total output and cost used previously, one important reason the cost values are higher or lower than \(\bar{Y} \) is because output rates (\(X_i \)) are higher or lower than the average output rate.

Total explained variation is found by summing these squared deviations, that is,

\[
\text{total explained variation} = \sum (\hat{Y}_i - \bar{Y})^2
\]

Unexplained variation is the difference between \(Y_i \) and \(\hat{Y}_i \). That is, part of the deviation of \(Y_i \) from the average value (\(\bar{Y} \)) is "explained" by the independent variable, X. The remaining deviation, \(Y_i - \hat{Y}_i \), is said to be unexplained. Summing the squares of these differences yields total unexplained variation = \(\sum (Y_i - \hat{Y}_i)^2 \)

The three sources of variation are shown in Figure 6.1.

The coefficient of determination (\(R^2 \)) measures the proportion of total variation in the dependent variable that is "explained" by the regression equation. That is,

\[
R^2 = \frac{\text{total explained variation}}{\text{total variation}} = \frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sum (Y_i - \bar{Y})^2}
\]

The value of \(R^2 \) ranges from zero to 1. If the regression equation explains none of the variation in Y (i.e., there is no relationship between the independent variables and the dependent variable), \(R^2 \) will be zero. If the equation explains all the variation (i.e., total explained variation = total variation), the coefficient of determination will be 1. In general, the higher the value of \(R^2 \), the "better" the regression equation. The term fit is often
used to describe the explanatory power of the estimated equation. When R^2 is high, the equation is said to fit the data well. A low R^2 would be indicative of a rather poor fit.

Table 6.1: Computing the Sources of Variation in a Regression Mode

<table>
<thead>
<tr>
<th>Y_i</th>
<th>Total Variation $(Y_i - \bar{Y})^2$</th>
<th>\hat{Y}_i</th>
<th>Explained Variation $(\hat{Y}_i - \bar{Y})^2$</th>
<th>Unexplained Variation $(Y_i - \hat{Y}_i)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>18,807.38</td>
<td>87.08</td>
<td>22,518.00</td>
<td>166.93</td>
</tr>
<tr>
<td>150</td>
<td>7,593.38</td>
<td>148.13</td>
<td>7,922.78</td>
<td>3.50</td>
</tr>
<tr>
<td>160</td>
<td>5,950.58</td>
<td>184.76</td>
<td>2,743.66</td>
<td>613.06</td>
</tr>
<tr>
<td>240</td>
<td>8.18</td>
<td>209.18</td>
<td>781.76</td>
<td>949.87</td>
</tr>
<tr>
<td>230</td>
<td>50.98</td>
<td>270.23</td>
<td>1,094.95</td>
<td>1,618.45</td>
</tr>
<tr>
<td>370</td>
<td>17,651.78</td>
<td>367.91</td>
<td>17,100.79</td>
<td>4.37</td>
</tr>
<tr>
<td>410</td>
<td>29,880.58</td>
<td>392.33</td>
<td>24,083.94</td>
<td>312.23</td>
</tr>
<tr>
<td>$Y_i=237.14$</td>
<td>$S(Y_i - \bar{Y})^2$ =79,942.86</td>
<td>$S(\hat{Y}_i - \bar{Y})^2$ =76,245.88</td>
<td>$S(Y_i - \hat{Y}_i)^2$ =3,668.41</td>
<td></td>
</tr>
</tbody>
</table>

How high must the coefficient of determination be in order that a regression equation be said to fit well? There is no precise answer to this question. For some relationships, such as that between consumption and income over time, one might expect R^2 to be at least 0.95. In other cases, such as estimating the relationship between output and average cost for fifty different producers during one production period, an R^2 of 0.40 or 0.50 might be regarded as quite good.

Based on the estimated regression equation for total cost and output, that is $\hat{Y}_i = 87.08 + 12.21X_1$ the coefficient of determination can be computed using the data on sources of variation shown in Table 6.1.

$$R^2 = \frac{\text{total explained variation}}{\text{total variation}} = \frac{76,245.88}{79,942.86} = 0.954$$

The value of R^2 is 0.954, which means that more than 95 percent of the variation in total cost is explained by changes in output levels. Thus, the equation would appear to fit the data quite well.

Evaluating the Explanatory Power of Individual Independent Variables

The t-test is used to determine whether there is a significant relationship between the dependent variable and each independent variable. This test requires that the standard deviation (or standard error) of the estimated regression coefficient be computed. The relationship between a dependent variable and an independent variable is not fixed because the estimate of b will vary for different data samples.

The standard error of \hat{b} from one of these regression equations provides an estimate of the amount of variability in b. The equation for this standard error is
\[s_b = \frac{\sum (y_i - \hat{y}_i)^2 / (n - 2)}{\sum (x_i - \bar{x})^2} \]

where \(n \) is the number of observations. For the production-cost example used in this section, \(n = 7 \) and the standard error of \(\hat{b} \) is

\[s_b = \frac{3,668.41/5}{511.40} = 1.19 \]

The least-squares estimate of \(\hat{b} \) is said to be an estimate of the parameter \(b \). But it is known that \(\hat{b} \) is subject to error and thus will differ from the true value of the parameter \(b \). That is why \(\hat{b} \) is called an estimate.

Because of the variability in \(\hat{b} \), it sometimes is useful to determine a range or interval for the estimate of the true parameter \(b \). Using principles of statistics, a 95 percent confidence interval estimate for \(b \) is given by the equation

\[\hat{b} + tn - k - 1 s_b \]

where \(t_{n-k-1} \) represents the value of a particular probability distribution known as student’s distribution. The subscript \(n-k-1 \) refers to the number of degrees of freedom, where \(n \) is the number of observations or data points and \(k \) is the number of independent variables in the equation. An abbreviated list of \(t \)-values for use in estimating 95 percent confidence intervals is shown in Table 6.4. In the example discussed here, \(n = 7 \) and \(k = 1 \), so there are five (i.e., \(7 - 1 - 1 \)) degrees of freedom, and the value of \(t \) in the table is 2.571.

Thus, in repeated estimations of the output cost relationship, it is expected that about 95 percent of the time such that the true value of parameter \(b \) will lie in the interval defined by the estimated value of \(b \) plus or minus 2.571 times the standard error of \(b \). For output-cost data, the 95 percent confidence interval estimate would be

\[12.21 + 2.571(1.19) \]

or from 9.15 to 15.27. This means that the probability that the true marginal relationship between cost and output (i.e., the value of \(b \)) within this range is 0.95.

If there is no relationship between the dependent and an independent variable, the parameter \(b \) would be zero. A standard statistical test for the strength of the relationship between \(Y \) and \(X \) is to check whether the 95 percent confidence interval includes the value zero. If it does not, the relationship between \(X \) and \(Y \) as measured by \(\hat{b} \) is said to be statistically significant. If that interval does include zero, then \(b \) is said to be non-significant, meaning that there does not appear to be a strong relationship between the two variables. The confidence interval for in \(\hat{b} \) the output-cost example did not include zero, and thus it is said that \(\hat{b} \), an estimate of marginal cost, is statistically significant or that there is a strong relationship between cost and rate of output.

Another way to make the same test is to divide the estimated coefficient (\(\hat{b} \)) by its standard error. The probability distribution of this ratio is the same as Student’s \(t \) distribution; thus, this ratio is called a \(t \)-value. If the absolute value of this ratio is equal to or greater than the tabled value of \(t \) for \(n - k - 1 \)
degrees of freedom, \(\hat{b} \) is said to statistically significant. Using the output-cost data, the t-value is computed to be

\[
t = \left| \frac{\hat{b}}{s_{\hat{b}}} \right| = \left| \frac{12.21}{1.19} \right| = 10.26
\]

Because the ratio is greater than 2.571, the value of the t-statistic from Table 6.2, it is concluded that there is a statistically significant relationship between cost and output.

In general, if the absolute value of the ratio \(\hat{b} / s_{\hat{b}} \) is greater than the value from the table for \(n - k - 1 \) degrees of freedom, the coefficient \(\hat{b} \) is said to be statistically significant.

Table 6.2: Selected Values of the Student's Distribution for 95 Per cent Confidence Interval

<table>
<thead>
<tr>
<th>Degree of Freedom</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.706</td>
</tr>
<tr>
<td>3</td>
<td>3.182</td>
</tr>
<tr>
<td>5</td>
<td>2.571</td>
</tr>
<tr>
<td>7</td>
<td>2.365</td>
</tr>
<tr>
<td>10</td>
<td>2.228</td>
</tr>
<tr>
<td>20</td>
<td>2.086</td>
</tr>
<tr>
<td>30</td>
<td>2.043</td>
</tr>
<tr>
<td>60</td>
<td>2.000</td>
</tr>
<tr>
<td>120</td>
<td>1.980</td>
</tr>
</tbody>
</table>

The standard error of the equation is used to determine the likely accuracy with which we can predict the value of the dependent variable associated with particular values of the independent variables. As a general principle, the smaller the value of the standard error of the equation, the more accurate the equation is and hence the more accurate any predictions made from it will be. To put this in another way, the standard error represents the standard deviation of the dependent variable about the regression line. Thus, the smaller the value, the better the fit of the equation to the data and the closer the estimate will be to the true regression line. Conversely, the larger the standard error, the bigger the deviation from the regression line and the less confidence that can be put in any prediction arising from it. The standard error of the coefficient works along similar lines. It gives an indication of the amount of confidence that can be placed in the estimated regression coefficient for each independent variable. Again, the smaller the value, the greater the confidence that can be placed in the estimated coefficient and vice versa. Finally, the t-test provides a further measurement of the accuracy of the regression coefficient for each of the independent variables.

A value of \(t \) greater than or equal to 2 generally indicates that the calculated coefficient is a reliable estimate, while a value of less than 2 indicates that the coefficient is unreliable.

(Note: This also partly depends, however, on the number of data observations on which the equation is based so that t-test tables need to be used in order to ensure an accurate interpretation of this statistic.)
Activity 1

Having described the statistics let us now consider how they may be used in practice. To do this, we can add example regression statistics to the previously estimated regression equation.

\[
\log QD = \log 200 - 1.5 \log P0 + 2.4 \log Ao
\]

standard errors of the respective estimates are in parenthesis

\[R^2 = 0.95, k = 2 \text{ and } n = 20\]

What does the \(R^2\) tell us? Are both the coefficients reliable? Explain.

6.4 THE MARKETING APPROACH TO DEMAND MEASUREMENT

The vast majority of business decisions involve some degree of uncertainty and managers seldom know exactly what the outcomes of their choices will be. One approach to reducing the uncertainty associated with decision making is to devote resources to forecasting. Forecasting involves predicting future economic conditions and assessing their effect on the operations of the firm.

Frequently, the objective of forecasting is to predict demand. In some cases, managers are interested in the total demand for a product. For example, the decision by an office products firm to enter the home computer market may be determined by estimates of industry sales growth. In other circumstances, the projection may focus on the firm’s probable market share. If a forecast suggests that sales growth by existing firms will make successful entry unlikely, the company may decide to look for other areas in which to expand.

Forecasts can also provide information on the proper product mix. For an automobile manufacturer such as Maruti Suzuki Ltd., managers must determine the number of Swift versus Alto to be produced. In the short run, this decision is largely constrained by the firm’s existing production facilities for producing each kind of car. However, over a longer period, managers can build or modify production facilities. But such choices must be made long before the vehicles begin coming off the assembly line. Accurate forecasts can reduce the uncertainty caused by this long lead time. For example, if the price of petrol is expected to increase, the relative demand for Alto or compact cars is also likely to increase.

Forecasting is an important management activity. Major decisions in large businesses are almost always based on forecasts of some type. In some cases, the forecast may be little more than an intuitive assessment of the future by
those involved in the decision. In other circumstances, the forecast may have required thousands of work hours and lakhs of rupees. It may have been generated by the firm’s own economists, provided by consultants specializing in forecasting, or be based on information provided by government agencies. Forecasting requires the development of a good set of data on which to base the analysis. A forecast cannot be better than the data from which it is derived. Three important sources of data used in forecasting are expert opinion, surveys, and market experiments.

Expert Opinion

The collective judgment of knowledgeable persons can be an important source of information. In fact, some forecasts are made almost entirely on the basis of the personal insights of key decision makers. This process may involve managers conferring to develop projections based on their assessment of the economic conditions facing the firm. In other circumstances, the company’s sales personnel may be asked to evaluate future prospects. In still other cases, consultants may be employed to develop forecasts based on their knowledge of the industry. Although predictions by experts are not always the product of "hard data," their usefulness should not be underestimated. Indeed, the insights of those closely connected with an industry can be of great value in forecasting.

Methods exist for enhancing the value of information elicited from experts. One of the most useful is the Delphi technique. Its use can be illustrated by a simple example. Suppose that a panel of six outside experts is asked to forecast a firm’s sales for the next year. Working independently, two panel members forecast an 8 percent increase, three members predict a 5 percent increase, and one person predicts no increase in sales. Based on the responses of the other individuals, each expert is then asked to make a revised sales forecast. Some of those expecting rapid sales growth may, based on the judgments of their peers, present less optimistic forecasts in the second iteration. Conversely, some of those predicting slow growth may adjust their responses upward. However, there may also be some panel members who decide that no adjustment of their initial forecast is warranted.

Assume that a second set of predictions by the panel includes one estimate of a 2 percent sales increase, one of 5 percent, two of 6 percent, and two of 7 percent. The experts again are shown each other’s responses and asked to consider their forecasts further. This process continues until a consensus is reached or until further iterations generate little or no change in sales estimates.

The value of the Delphi technique is that it aids individual panel members in assessing their forecasts. Implicitly, they are forced to consider why their judgment differs from that of other experts. Ideally, this evaluation process should generate more precise forecasts with each iteration.

One problem with the Delphi method can be its expense. The usefulness of expert opinion depends on the skill and insight of the experts employed to make predictions. Frequently, the most knowledgeable people in an industry are in a position to command large fees for their work as consultants or they may be employed by the firm, but have other important responsibilities,
which means that there can be a significant opportunity cost in involving
them in the planning process. Another potential problem is that those who
consider themselves experts may be unwilling to be influenced by the
predictions of others on the panel. As a result, there may be few changes in
subsequent rounds of forecasts.

Surveys

Surveys of managerial plans can be an important source of data for
forecasting. The rationale for conducting such surveys is that plans generally
form the basis for future actions. For example, capital expenditure budgets
for large corporations are usually planned well in advance. Thus, a survey of
investment plans by such corporations should provide a reasonably accurate
forecast of future demand for capital goods.

Several private and government organizations conduct periodic surveys. The
annual National Council of Applied Economic Research (NCAER) survey of
Market Information of Households is well recognized. Many private
organizations like ORG-MARG and TNS INDIA conduct surveys relating to
consumer demand across certain geographical areas.

If data from existing sources do not meet its specific needs, a firm may
conduct its own survey. Perhaps the most common example involves
companies that are considering a new product or making a substantial change
in an existing product. But with new or modified products, there are no data
on which to base a forecast. One possibility is to survey households regarding
their anticipated demand for the product. Typically, such surveys attempt to
ascertain the demographic characteristics (e.g., age, education, and income)
of those who are most likely to buy the product and find how their decisions
would be affected by different pricing policies.

Although surveys of consumer demand can provide useful data for
forecasting, their value is highly dependent on the skills of their originators.
Meaningful surveys require careful attention to each phase of the process.
Questions must be precisely worded to avoid ambiguity. The survey sample
must be properly selected so that responses will be representative of all
customers. Finally, the methods of survey administration should produce a
high response rate and avoid biasing the answers of those surveyed. Poorly
phrased questions or a non random sample may result in data that are of little
value.

Even the most carefully designed surveys do not always predict consumer
demand with great accuracy. In some cases, respondents do not have enough
information to determine if they would purchase a product. In other
situations, those surveyed may be pressed for time and be unwilling to devote
much thought to their answers. Sometimes the response may reflect a desire
(either conscious or unconscious) to put oneself in a favorable light or to gain
approval from those conducting the survey. Because of these limitations,
forecasts seldom rely entirely on results of consumer surveys. Rather, these data are considered supplemental sources of information for decision making.

Market Experiments

A potential problem with survey data is that survey responses may not translate into actual consumer behavior. That is, consumers do not necessarily do what they say they are going to do. This weakness can be partially overcome by the use of market experiments designed to generate data prior to the full-scale introduction of a product or implementation of a policy.

To set up a market experiment, the firm first selects a test market. This market may consist of several cities; a region of the country, or a sample of consumers taken from a mailing list. Once the market has been selected, the experiment may incorporate a number of features. It may involve evaluating consumer perceptions of a new product in the test market. In other cases, different prices for an existing product might be set in various cities in order to determine demand elasticity. A third possibility would be a test of consumer reaction to a new advertising campaign.

There are several factors that managers should consider in selecting a test market. First, the location should be of manageable size. If the area is too large, it may be expensive and difficult to conduct the experiment and to analyze the data. Second, the residents of the test market should resemble the overall population of India in age, education, and income. If not, the results may not be applicable to other areas. Finally, it should be possible to purchase advertising that is directed only to those who are being tested.

Market experiments have an advantage over surveys in that they reflect actual consumer behavior, but they still have limitations. One problem is the risk involved. In test markets where prices are increased, consumers may switch to products of competitors. Once the experiment has ended and the price reduced to its original level, it may be difficult to regain those customers. Another problem is that the firm cannot control all the factors that affect demand. The results of some market experiments can be influenced by bad weather, changing economic conditions, or the tactics of competitors. Finally, because most experiments are of relatively short duration, consumers may not be completely aware of pricing or advertising changes. Thus, their responses may understate the probable impact of those changes.

Activity 2

What are the major marketing approaches to demand measurement?
6.5 DEMAND FORECASTING TECHNIQUES

Time-series analysis

Regression analysis, as described above, can be used to quantify relationships between variables. However, data collection can be a problem if the regression model includes a large number of independent variables. When changes in a variable show discernable patterns over time, time-series analysis is an alternative method for forecasting future values.

The focus of time-series analysis is to identify the components of change in the data. Traditionally, these components are divided into four categories:

1. Trend
2. Seasonality
3. Cyclical patterns
4. Random fluctuations

A trend is a long-term increase or decrease in the variable. For example, the time series of population in India exhibits an upward trend, while the trend for endangered species, such as the tiger, is downward. The seasonal component represents changes that occur at regular intervals. A large increase in sales of umbrellas during the monsoon would be an example of seasonality.

Analysis of a time series may suggest that there are cyclical patterns, defined as sustained periods of high values followed by low values. Business cycles fit this category. Finally, the remaining variation in a variable that does not follow any discernable pattern is due to random fluctuations. Various methods can be used to determine trends, seasonality, and any cyclical patterns in time-series data. However, by definition, changes in the variable due to random factors are not predictable. The larger the random component of a time series, the less accurate the forecasts based on those data.

Trend Projection

One of the most commonly used forecasting techniques is trend projection. As the name suggests, this approach is based on the assumption that there is an identifiable trend in a time series of data. Trend projection can also be used as the starting point for identifying seasonal and cyclical variations.

Table 6.3 is a time series of a firm’s quarterly sales over a three-year time span. These data are used to illustrate graphical and statistical trend projection and also to describe a method for making seasonal adjustments to a forecast.
Demand and Revenue Analysis

Table 6.3: Hypothetical Time-Series Sales Data

<table>
<thead>
<tr>
<th>Period Number</th>
<th>Quarter</th>
<th>Sales (Lakhs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2018:I</td>
<td>Rs. 300</td>
</tr>
<tr>
<td>2</td>
<td>2018:II</td>
<td>305</td>
</tr>
<tr>
<td>3</td>
<td>2018:III</td>
<td>315</td>
</tr>
<tr>
<td>4</td>
<td>2018:IV</td>
<td>340</td>
</tr>
<tr>
<td>5</td>
<td>2019:I</td>
<td>346</td>
</tr>
<tr>
<td>6</td>
<td>2019:II</td>
<td>352</td>
</tr>
<tr>
<td>7</td>
<td>2019:III</td>
<td>364</td>
</tr>
<tr>
<td>8</td>
<td>2019:IV</td>
<td>390</td>
</tr>
<tr>
<td>9</td>
<td>2020:I</td>
<td>397</td>
</tr>
<tr>
<td>10</td>
<td>2020:II</td>
<td>404</td>
</tr>
<tr>
<td>11</td>
<td>2020:III</td>
<td>418</td>
</tr>
<tr>
<td>12</td>
<td>2020:IV</td>
<td>445</td>
</tr>
</tbody>
</table>

Statistical Curve Fitting

Basically, this involves using the ordinary least-squares concept developed above to estimate the parameters of the equation. Suppose that an analyst determines that a forecast will be made assuming that there will be a constant rate of change in sales from one period to the next. That is, the firm’s sales will change by the same amount between two periods. The time-series data of Table 6.4 are to be used to estimate that rate of change.

Statistically, this involves estimating the parameters of the equation

$$S_t = S_0 + bt$$

where S denotes sales and t indicates the time period. The two parameters to be estimated are S_0 and b. The value of S_0 corresponds vertical intercept of the line and the parameter b is the constant rate of change and corresponds to the slope. Many hand calculators can estimate the parameters of equation. Specific procedures vary from model to model, but usually the only requirement is that the users input the data and push one or two designated keys. The machine then returns the estimated parameters. For the data of Table 6.3, the quarters would have to be input as sequential numbers starting with 1. That is, 2018: I would be entered as 1, 2018: II would be entered as 2, and so forth. Based on the data from the table, the equation is estimated as

$$S_f = 281.394 + 12.811t$$

The interpretation of the equation is that the estimated constant rate of increase in sales per quarter is Rs. 12.811 lakhs. A forecast of sales for any future quarter, S_t, can be obtained by substituting in the appropriate value for t. For example, the third quarter of 2021 is the 15th observation of the time series. Thus, the estimated sales for that quarter would be $281.394 + 12.811(15)$, or Rs. 473.56 lakhs.

Now suppose that the individual responsible for the forecast wants to estimate a percentage rate of change in sales. That is, it is assumed that sales will increase by a constant percent each period. This relationship can be expressed mathematically as

$$S_t = S_{t-1}(1 + g)$$
Similarly,

\[S_{t-1} = S_{t-2}(1 + g) \]

where \(g \) is the constant percentage rate of change, or the growth rate. These two equations imply that

\[S_t = S_{t-2} (1 + g)^2 \]

and, in general, \(S_t = S_0 (1 + g)^t \)

As shown, the parameters of this equation cannot be estimated using ordinary least squares. The problem is that the equation is not linear. However, there is a simple transformation of the equation that allows it to be estimated using ordinary least squares.

Take logs, the result is

\[\ln S_t = \ln [S_0 (1 + g)t] \]

But the logarithm of a product is just the sum of the logarithms. Thus

\[\ln S_t = \ln S_0 + \ln[(1 + g)t] \]

The right-hand side of the equation can be further simplified by noting that

\[\ln [(1 + g)t] = t[\ln(1 + g)] \]

Hence

\[\ln S_t = \ln S_0 + t[\ln(1 + g)] \]

This equation is linear in form. This can be seen by making the following substitutions:

\[Y_t = \ln S_t \]
\[Y_o = \ln S_0 \]
\[b = \ln (1 + g) \]

Thus the new equation is

\[Y_t = Y_o + bt \]

which is linear.

The parameters of this equation can easily be estimated using a hand calculator. The key is to recognize that the sales data have been translated into logarithms. Thus, instead of \(S_t \), it is in \(S_i \) that must be entered as data. However, note that the \(t \) values have not been transformed. Hence, for the first quarter of 1996, the data to be entered are \(\ln 300 = 5.704 \) and \(1 \); for the second quarter, \(\ln 305 = 5.720 \) and \(2 \); and so forth. The transformed data are provided in Table 6.4.
Table 6.4: Natural Logarithms of Hypothetical Time-Series Sales Data

<table>
<thead>
<tr>
<th>Period Number (t)</th>
<th>Quarter</th>
<th>National Logarithm of Sales (in Lakhs) S_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2018:I</td>
<td>5.704</td>
</tr>
<tr>
<td>2</td>
<td>2018:II</td>
<td>5.720</td>
</tr>
<tr>
<td>3</td>
<td>2018:III</td>
<td>5.753</td>
</tr>
<tr>
<td>4</td>
<td>2018:IV</td>
<td>5.829</td>
</tr>
<tr>
<td>5</td>
<td>2019:I</td>
<td>5.847</td>
</tr>
<tr>
<td>6</td>
<td>2019:II</td>
<td>5.864</td>
</tr>
<tr>
<td>7</td>
<td>2019:III</td>
<td>5.897</td>
</tr>
<tr>
<td>8</td>
<td>2019:IV</td>
<td>5.966</td>
</tr>
<tr>
<td>9</td>
<td>2020:I</td>
<td>5.984</td>
</tr>
<tr>
<td>10</td>
<td>2020:II</td>
<td>6.001</td>
</tr>
<tr>
<td>11</td>
<td>2020:III</td>
<td>6.036</td>
</tr>
<tr>
<td>12</td>
<td>2020:IV</td>
<td>6.098</td>
</tr>
</tbody>
</table>

Using the ordinary least-squares method, the estimated parameters of the equation based on the data from Table 6.5 are

\[Y_t = 5.6623 + 0.03531 \]

But these parameters are generated from the logarithms of the data. Thus, for interpretation in terms of the original data, they must be converted back based on the relationships \(\ln S_o = Y_o = 5.6623 \) and \(\ln (1 + g) = b = 0.0353 \). Taking the antilogs yields \(S_o = 287.810 \) and \(1 + g = 1.0359 \). Substituting these values for \(S_o \) and \(1 + g \) back into the original equation gives

\[S_t = 287.810(1.0359)^t \]

where 287.810 is sales (in lakhs of rupees) in period 0 and the estimated growth rate, \(g \), is 0.0359 or 3.59 per cent.

To forecast sales in a future quarter, the appropriate value of \(t \) is substituted into the equation. For example, predicted sales in the third quarter of 2021 (i.e., the fifteenth quarter) would be 287.810 \((1.0359)^{15} \), or ₹ 488.51 lakhs.

Seasonal Variation in Time-Series Data

Seasonal fluctuations in time-series data are not uncommon. In particular, a large increase in sales for the fourth quarter is a characteristic of certain industries. Indeed, some retailing firms make large amounts of their total sales during the Diwali period. Other business activities have their own seasonal sales patterns. Electric companies serving hot, humid areas have distinct peak sales periods during the summer months because of the extensive use of air conditioning. Similarly, demand for accountants’ services increases in the first quarter as income tax deadlines approach.

A close examination of the data in Table 6.4 indicates that the quarterly sales increases are not uniformly distributed over the year. The increases from the first quarter to the second, and from the fourth quarter to the first, tend to be small, while the fourth-quarter increase is consistently larger than that of other quarters. That is, the data exhibits seasonal fluctuations.
Pronounced seasonal variations can cause serious errors in forecasts based on time-series data. For example, Table 6.4 indicates that actual sales for the fourth quarter 2020 were ₹ 445 lakhs. But if the estimated equation is used to predict sales for that period (using the constant rate of change model), the predicted total is 281.394 + 12.811(12), or ₹ 435.13 lakhs. The large difference between actual and predicted sales occurs because the equation does not take into account the fourth-quarter sales jump. Rather, the predicted value from the equation represents an averaging of individual quarters. Thus, sales will be underestimated for the strong fourth quarter. Conversely, the predicting equation may overestimate sales for other quarters.

The accuracy of the forecast can be improved by seasonally adjusting the data. Probably the most common method of adjustment is the ratio-to-trend approach. Its use can be illustrated using the data from Table 6.4 based on predicting equation,

\[S_t = 281.394 + 12.811t \]

actual and calculated fourth-quarter sales are shown in Table 6.5. The final column of the table is the ratio of actual to predicted sales for the fourth quarter. This ratio is a measure of the seasonal error in the forecast.

As shown, for the three-year period, average actual sales for the fourth quarter were 102 percent of the average forecasted sales for that quarter. The factor 1.02 can be used to adjust future fourth-quarter sales estimates. For example, if the objective is to predict sales for the fourth quarter of 2020, the predicting equation generates an estimate of Rs. 435.13 lakhs. Multiplying this number by the 1.020 adjustment factor, the forecast is increased to Rs. 443.8 lakhs, which is close to the actual sales of Rs. 445 lakhs for that quarter. A similar technique could be used to make a downward adjustment for predicted sales in other quarters.

Seasonal adjustment can improve forecasts based on trend projection. However, trend projection still has some shortcomings. One is that it is primarily limited to short-term predictions. If the trend is extrapolated much beyond the last data point,

<table>
<thead>
<tr>
<th>Year</th>
<th>Forecasted Fourth-Quarter Sales</th>
<th>Actual Fourth-Quarter Sales</th>
<th>Actual/Predicted Fourth-Quarter Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>332.64</td>
<td>₹340</td>
<td>1.022</td>
</tr>
<tr>
<td>2019</td>
<td>383.88</td>
<td>390</td>
<td>1.016</td>
</tr>
<tr>
<td>2020</td>
<td>435.13</td>
<td>445</td>
<td>1.023</td>
</tr>
<tr>
<td></td>
<td>Average =</td>
<td></td>
<td>1.020</td>
</tr>
</tbody>
</table>
Demand and Revenue Analysis

the accuracy of the forecast diminishes rapidly. Another limitation is that factors such as changes in relative prices and fluctuations in the rate of economic growth are not considered. Rather, the trend projection approach assumes that historical relationships will not change.

Exponential Smoothing

Trend projection is actually just regression analysis where the only independent variable is time. One characteristic of this method is that each observation has the same weight. That is, the effect of the initial data point on the estimated coefficients is just as great as the last data point. If there has been little or no change in the pattern over the entire time series, this is not a problem. However, in some cases, more recent observations will contain more accurate information about the future than those at the beginning of the series. For example, the sales history of the last three months may be more relevant in forecasting future sales than data for sales 10 years in the past.

Exponential smoothing is a technique of time-series forecasting that gives greater weight to more recent observations. The first step is to choose a smoothing constant, \(a \), where \(0 < a < 1.0 \). If there are \(n \) observations in a time series, the forecast for the next period (i.e., \(n + 1 \)) is calculated as a weighted average of the observed value of the series at period \(n \) and the forecasted value for that same period. That is,

\[
F_{n+1} = aX_n + (1 - a)F_n
\]

where \(F_{n+1} \) is the forecast value for the next period, \(X_n \) is the observed value for the last observation, and \(F_n \) is a forecast of the value for the last period in the time series. The forecasted values for \(F_n \) and all the earlier periods are calculated in the same manner.

Specifically,

\[
F_t = aX_{t-1} + (1 - a)F_{t-1}
\]

starting with the second observation (i.e., \(t = 2 \)) and going to the last (i.e., \(t = n \)). Note that equation cannot be used to forecast \(F_1 \) because there is no \(X_0 \) or \(F_0 \). This problem is usually solved by assuming that the forecast for the first period is equal to the observed value for that period. That is, \(F_1 = X_1 \). Using the equation it can be seen that this implies that the second-period forecast is just the observed value for the first period, or \(F_1 = X_1 \).

The exponential smoothing constant chosen determines the weight that is given to different observations in the time series. As \(a \) approaches 1.0, more recent observations are given greater weight. For example, if \(a = 1.0 \), then \((1 - a) = 0 \) and the equations indicate that the forecast is determined only by the actual observation for the last period. In contrast, lower values for \(a \) give greater weight to observations from previous periods.
Assume that a firm’s sales over the last 10 weeks are as shown in Table 6.6. By assumption, \(F_2 = F_1 = X_1\) if \(\alpha = 0.20\), then
\[
F_3 = 0.20(4.30) + 0.80(400) = 406.0
\]
and
\[
F_4 = 0.20(420) + 0.80(406) = 408.8
\]
The forecasted values for four different values of \(\alpha\) are provided in Table 6.6. The table also shows forecasted sales for the next period after the end of the time-series data, or week 11. Using \(\alpha = 0.20\), the forecasted sales value for the 11th week is computed to be
\[
F_{11} = 0.20(420) + 0.80(435.7) = 432.56
\]
Table 6.6 suggests why this method is referred to as smoothing technique. Consider the forecasts based on \(\alpha = 0.20\). Note that the smoothed data show much less fluctuation than the original sales data. Note also that as \(\alpha\) increases, the fluctuations in the \(F_t\) increase, because the forecasts give more weight to the last observed value in the time series.

Choice of a Smoothing Constant

Any value of \(\alpha\) could be used as the smoothing constant. One criterion for selecting this value might be the analyst’s intuitive judgment regarding the weight that should be given to more recent data points. But there is also an empirical basis for selecting the value of \(\alpha\). Remember that the coefficients of a regression equation are chosen to minimize the sum of squared deviations between observed and predicted values. This same method can be used to determine the smoothing constant.

The term \((X_t - F_t)^2\) is the square of the deviation between the actual time-series data and the forecast for the same period. Thus, by adding these values for each observation, the sum of the squared deviations can be computed as
\[
\sum_{t=1}^{n} (X_t - F_t)^2
\]
One approach to choosing α is to select the value that minimizes this sum. For the data and values shown in Table 6.6, these sums are:

<table>
<thead>
<tr>
<th>Smoothing Constant</th>
<th>Sum of Squared Deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>6484.23</td>
</tr>
<tr>
<td>0.40</td>
<td>4683.87</td>
</tr>
<tr>
<td>0.60</td>
<td>4213.08</td>
</tr>
<tr>
<td>0.80</td>
<td>4394.52</td>
</tr>
</tbody>
</table>

These results suggest that, of the four values of the smoothing constant, $\alpha = 0.60$ provides the best forecasts using these data. However, it should be noted that there may be values of α between 0.60 and 0.80 or between 0.40 and 0.60 that yield even better results.

Evaluation of Exponential Smoothing

One advantage of exponential smoothing is that it allows more recent data to be given greater weight in analyzing time-series data. Another is that, as additional observations become available, it is easy to update the forecasts. There is no need to re-estimate the equations, as would be required with trend projection.

The primary disadvantage of exponential smoothing is that it does not provide very accurate forecasts if there is a significant trend in the data. If the time trend is positive, forecasts based on exponential smoothing will be likely to be too low, while a negative time trend will result in estimates that are too high. Simple exponential smoothing works best when there is no discernable time trend in the data. There are, however, more sophisticated forms of exponential smoothing that allow both trends and seasonality to be accounted for in making forecasts.

6.6 BAROMETRIC FORECASTING

Barometric forecasting is based on the observed relationships between different economic indicators. It is used to give the decision maker an insight into the direction of likely future demand changes, although it cannot usually be used to quantify them.

Five different types of indicators may be used. Firstly, there are **leading indicators** which run in advance of changes in demand for a particular product. An example of these might be an increase in the number of building permits granted which would lead to an increase in demand for building-related products such as wood, concrete and so on. Secondly, there are **coincident indicators** which occur alongside changes in demand. Retail sales would fall into this category, as an increase in sales would generate an increase in demand for the manufacturers of the goods concerned. Thirdly, there are **lagging indicators** which run behind changes in demand. New industrial investment by firms is often said to fall into this category. In this case it is argued that firms will only invest in new production facilities when demand is already firmly established. Thus, increased investment is a sign, or confirmation, that an initial increase in demand has already taken place. This
may well indicate that the economy is improving, for example, so that further changes in the level of demand can be expected in the near future.

One particular problem with each of these three types of indicators is that single indicator does not always prove to be accurate in predicting changes in demand. For this reason, groups of indicators may be used instead. The fourth and fifth types of indicators fall into this category. These are composite indices and diffusion indices respectively. Composite indices are made up of weighted averages of several leading indicators which demonstrate an overall trend. Diffusion indices are groups of leading indicators whose directional shifts are analysed separately. If more than half of the leading indicators included within them are rising, demand is forecast to rise and vice versa. Again, it is important to note that it is the direction of change that is the basis of the prediction, the actual size of the change cannot be measured. In addition, the situation is complicated by the fact that there may be variations in the length of the lead time between the various indicators. This means that the accuracy of predictions may be reduced.

6.7 FORECASTING METHODS: REGRESSION MODELS

You have seen how regression analysis is used in the estimating process. In this part you will see several applications of multiple regression analysis to the forecasting process. In this section we shall forecast demand by using data for Big Sky Foods (BSF) a company selling groceries.

Using the OLS method of estimation available in Excel or any standard statistical package, the demand function we estimated was

\[
Q = 15.939 - 9.057P + .009INC + 5.092PC
\]

where \(Q\) = sales; \(P\) = BSF’s price; \(INC\) = income; \(PC\) = price charged by BSF’s major competitor. This model can be used to forecast sales, assuming that forecasts of the independent variables are available.

Table 6.7: Data Used to Estimate Big Sky Foods’ Demand Function

<table>
<thead>
<tr>
<th>Observation</th>
<th>Sales (thousands of units)</th>
<th>Price</th>
<th>Income (₹ Lakhs)</th>
<th>Competitor’s Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016Q4</td>
<td>20</td>
<td>5</td>
<td>2620</td>
<td>5</td>
</tr>
<tr>
<td>2017Q1</td>
<td>16</td>
<td>5.2</td>
<td>2733</td>
<td>4.8</td>
</tr>
<tr>
<td>2017Q2</td>
<td>16</td>
<td>5.32</td>
<td>2898</td>
<td>4.8</td>
</tr>
<tr>
<td>2017Q3</td>
<td>14</td>
<td>5.48</td>
<td>3056</td>
<td>4.5</td>
</tr>
<tr>
<td>2017Q4</td>
<td>16</td>
<td>5.6</td>
<td>3271</td>
<td>4.44</td>
</tr>
<tr>
<td>2018Q1</td>
<td>19</td>
<td>5.8</td>
<td>3479</td>
<td>4.55</td>
</tr>
<tr>
<td>2018Q2</td>
<td>17</td>
<td>6.03</td>
<td>3736</td>
<td>4.6</td>
</tr>
<tr>
<td>2018Q3</td>
<td>18</td>
<td>6.01</td>
<td>3868</td>
<td>4.85</td>
</tr>
<tr>
<td>2018Q4</td>
<td>21</td>
<td>5.92</td>
<td>4016</td>
<td>5.1</td>
</tr>
<tr>
<td>2019Q1</td>
<td>26</td>
<td>5.9</td>
<td>4152</td>
<td>5.4</td>
</tr>
<tr>
<td>2019Q2</td>
<td>30</td>
<td>5.85</td>
<td>4336</td>
<td>5</td>
</tr>
<tr>
<td>2019Q3</td>
<td>26</td>
<td>5.8</td>
<td>4477</td>
<td>4.95</td>
</tr>
<tr>
<td>2019Q4</td>
<td>27</td>
<td>5.85</td>
<td>4619</td>
<td>5</td>
</tr>
<tr>
<td>2020Q1</td>
<td>29</td>
<td>5.8</td>
<td>4764</td>
<td>5</td>
</tr>
</tbody>
</table>
Big Sky Foods has access to forecasts from one of the macro econometric service firms that provide a good estimate of the income variable by quarter for one year ahead. In addition, BSF has had reasonable success using a simple exponential smoothing model (with $w = .8$) to predict the competitor’s price one quarter in advance. And, of course, BSF controls its own price.

Assume that BSF plans to price at 5.85 next quarter, that the competitor’s price is forecast to be 4.99, and that income is forecast to be 4800. Sales for BSF can then be forecast as follows:

$$Q = 15.939 - 9.057(5.85) + 0.008(4800) + 5.092(4.99)$$
$$Q = 31.565$$

Notice that, in making this forecast, BSF starts with an economic forecast that provides a projection for income and an exponential smoothing model that provides a projected value for the competitor’s price. These are then combined with the multiple regression model of demand and BSF’s own pricing plan to arrive at a forecast for sales. BSF can then use this procedure to experiment with the effect of different prices or to make forecasts based on differing forecasts of the other independent variables.

Activity 3

Try this yourself. Suppose that forecasts for income and the competitor’s price are the same as those in our example, and that you want to evaluate the effect of setting BSF’s price at 5.75 rather than 5.85. What estimate for sales (Q) would you obtain?

$$Q = 15.939 - 9.057() + 0.008() + 5.092()$$
$$Q = \underline{}$$

What can you say about price elasticity based on this result?

6.8 SUMMARY

In this chapter we have looked at a range of demand estimation and forecasting techniques which can be used by the firm either singly or in combination in order to predict the level of demand for their product(s). The
choice of technique will depend upon the resources at the firm’s disposal, the cost to the firm of insufficient knowledge of the market(s) in which it operates and the ease with which information can be obtained. Each of the methods we have considered has its own advantages and disadvantages in its use and there is no ‘right’ or ‘wrong’ approach in any given situation. It is for the decision maker to choose the technique(s) which are most appropriate to the firm’s needs. As a general principle, however, the more, and the more accurate, information the firm has the better able it will be to take the best decisions possible for the firm’s efficient operation. Thus, the firm can substantially reduce the risk to which it will be exposed, particularly in rapidly changing markets.

Sales forecasts can be developed using qualitative methods, such as expert opinion, the Delphi method, or market surveys or by using quantitative models, such as exponential smoothing, time series decomposition, or multiple regression analysis. In many cases, firms use a combination of qualitative and quantitative forecasting techniques. The use of more than one sales forecast method is advisable because doing so can reduce errors in the final forecast.

6.9 KEY WORDS

Demand forecasting is a prediction or estimation of the future demand.

Regression makes use of both economic theory and estimation techniques to generate forecasts from historical data.

Trend Method is a forecasting technique, where the time series data on the variable under forecast are used to fit a trend line or curve either graphically or by means of a statistical technique known as the Least-Squares method.

6.10 SELF-ASSESSMENT QUESTIONS

Look at Table 6.7 in this unit. That table contains a set of data related to Big Sky Foods’ sales and price, consumer income, and the price charged by their major competitor. The data cover the period 2016 Q4 – 2020 Q1. As in the previous problem, you should ignore the actual values given for the first quarter of 2020 and see how well you can forecast them using the tools covered in this chapter.

a. Start by estimating a new demand function using just the first 13 observations, with sales (S) a function of price (P), income (INC), and the competitor’s price (CP). Write your function and related statistical results here:

\[S = a + b_1P + b_2INC + b_3PC \]

() () () Put t-ratios in the parentheses.

\[R^2 = \]
b. Now, estimate a simple linear time trend for income based on data for 2016 Q4 – 2019 Q4:

\[\text{INC} = a + bT \]

() t-ratio

Project the trend ahead one quarter to forecast income for the first quarter of 1995: Income forecast for 2020 Q1 =

c. Use an exponential smoothing model to make a forecast of the competitor’s price (CP) for the first quarter of 2020:

Competitor’s price forecast for 2020 Q1 =

d. Assuming that Big Sky Foods does intend to set its price at ₹5.80 during the first quarter of 2017, use the information in parts a through c to make a sales forecast for 2020 Q1.

First 2020 Q1 sales forecast =

e. Now, prepare another sales forecast based on just a simple linear time trend of the sales data:

Second 2020 Q1 sales forecast =

f. Given that the actual level of sales in the first quarter of 2017 was 29, which model gave the best forecast? Without knowing actual sales, how might you have judged the two models used, and in which one do you think you would have had the most confidence? Why?

6.11 FURTHER READINGS

