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a variable force such as the force of
gravitation? We need to solve line
integrals.
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In this unit, you will learn how to integrate vector functions of a scalar variable and
solve line integrals. Line integrals are a generalization of ordinary integrals that you
have studied in school. In order to learn these concepts better, you should revise
integral calculus that you have studied in school. You must also revise the concepts of
scalar and vector products, the basic concepts of vector functions of a scalar variable
and how to differentiate them, all of which you have studied in Unit 2 of BPHCT-131.

“The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is

a wonderful gift...”

Eugene Paul

Wigner
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3.1 INTRODUCTION

In Unit 2 of BPHCT-131 and Units 1 and 2 of this course, you have studied
vector functions, scalar and vector fields, and their properties. You have learnt
how to differentiate vector functions and scalar and vector fields. You have
studied the concepts of the gradient of a scalar field, and the divergence and
curl of vector fields. These are differential operations on scalar and vector
fields that find many applications in physics. In this unit, you will learn how to
determine the integrals of vector functions, and scalar and vector fields. You
will also learn how to evaluate line integrals of vector fields.

There are several problems in physics where we need to calculate the
integrals of vector functions and vector fields. For example, we may want to
know what path a cricket ball will take after it leaves the bowler’s hands with a
given acceleration. Finding the path of the cricket ball involves solving a
differential equation and integrating vector functions. The actual integration is
essentially the same as in ordinary calculus which you have studied as a part
of your school curriculum. However, integrals of vector functions and fields are
different in the way in which the integrand is handled, as well as in the
physical meanings of the quantities obtained. This will become clear as you
study this unit.

In Sec. 3.2, you will learn how to integrate a vector function and apply it to
solve some simple problems in physics. In this section you will also learn how
to integrate the scalar and vector products of vector functions and some
applications in physics.

In this unit you will learn how to evaluate line integrals. The line integral is a
generalization of an ordinary integral over a single variable. In a line integral
the path of integration is not a straight line but an arbitrary curve in space.
Line integrals are used extensively in physics. One of the most important
applications of the line integral is to determine the work done by a variable
force. Suppose an object moves along an arbitrary curve in space, (instead of
a straight line) under the action of a force. How would you calculate the work
done by the force in moving the object between any two points on this path?
The work done is the integral of the scalar product of the force field and an
infinitesimal displacement along the path of the object. This is an example of a
line integral.

In Sec. 3.3, you will learn how to evaluate line integrals in which the integrand
is the scalar product of a vector field and a displacement along an arbitrary
path in space. You will also study other types of line integrals of scalar and
vector fields. In Sec. 3.4, you will study about conservative vector fields. You
will see that line integrals can be used to define conservative force fields, an
important concept in physics.

The integrals of vector functions being taken up in this unit involve integration
over a single variable. In physics we often need to evaluate integrals over
arbitrary surfaces and volumes. These involve integrals over two and three
variables. In Unit 4, you will study about surface and volume integrals of a
vector field. A brief introduction to integration over two variables is given in
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Appendix A2 of this block. You should read Appendix A2 after completing your
study of this unit.

Expected Learning Outcomes

After studying this unit, you should be able to:

+« evaluate the integral of a vector function with respect to a scalar;

+«» evaluate the integrals of scalar and vector products of scalar functions;
and

+ evaluate line integrals of scalar and vector fields.

3.2 INTEGRATION OF A VECTOR FUNCTION

Let us begin our study by asking: How do we integrate a vector function
with respect to a scalar?

We lay down the basic rules for the integration of a vector function with
respect to a scalar. Consider a vector a which is a function of a scalar t. Let

a=a(t) = a;(t)i +as(t)j +az(t)k (3.1a)
where a;(t), ax(t) and as(t) are the x, y and z components of a(t),
respectively. If

da -~

— = b(t 3.1b

i (t) (3.1b)
then the (indefinite) integral of b (t) with respect to tis a(t) +¢, where ¢ is an

arbitrary constant vector. Symbolically, we write:

jB(t)dt - A(t)+¢ (3.2)
In physics, we deal with quantities that generally have dimensions. Therefore, You have studied
C is a vector whose dimension is the same as that of a. In a physical integration in school
problem, ¢ can be determined by using given initial conditions. and you know that
integration is the
In order to evaluate the integral of a vector function such as the one in reverse process of
Eg. (3.2), we express the vector b in its component form: differentiation. This is
- A A A also true for the
b(t) = by(t)i +by(t)j +bs(t)k (3.3) integration of vector
functions relative to a
where bq(t), bo(t) and b3 (t) are the x, y and z components of b(t), scalar.

respectively. We can now write the integral of the vector function B(t) as:

_[B(t)dt =i"J'b1(t)dt + jjbz(t)dt + |2jb3(t)dt (3.4)

Note that since 2—? = B(t), we also have:

day(t) _

das(t) dag(t)
15 =by(t), 2R =by(t) and =2 =ba(t)  (35)
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From our knowledge of calculus, using Eq. (3.2), we can also write,
j by(t)dt =ay(t) + cy, j bo(t)dt = a,(t)+C,, and j bg(t)dt = ag(t)+c3 (3.6)
where cq, ¢, and cy are the constants of integration.

So to evaluate j B(t)dt, we only need to integrate the scalar functions
by(t), bo(t) and bz(t) with respect to the scalar t, as in ordinary calculus. Note
that, we leave the unit vectors f, ] and k outside the integrals as these are

constant and do not depend on t. In the same way, we can write the
expression for the definite integral of a vector function in the interval [t;, t, ]

as follows:

t ty t t
Ib(t)dt = jbl(t)dt +j jbz(t)dt +k Ibg(t)dt (3.7)
ty ty ty ty
The integration of the two-dimensional vector function with respect to scalar is

also carried out in the same way. So, let us how write down the formal
definitions of the integral of a vector function b(t) in two and three-

dimensions:

INTEGRAL OF A VECTOR FUNCTION

1. For a vector function in three dimensions defined as
b(t)=by(t)i +by(t)j+bs(t)k where by (t),b,(t) and bs(t) are
continuous over the interval [t,, t,], the indefinite integral of b(t)with
respect to t is given by:

J.B(t)dt :i‘jbl(t)dt + jjbz(t)dt + ﬁjbg(t)dt (3.4)

The definite integral of b(t)over the interval [t,, t,] is:

ty tp tr ty
jB(t)dt = i“jbl(t)dt +]jb2(t)dt+12 jb3(t)dt (3.7)

ty ty ty ty

2. For a vector function in two dimensions, b(t)=b(t)i +bo(t)] where
by(t) and by (t) are continuous over the interval [t t,], the indefinite

integral of B(t) with respect to t is given by
jB(t)dt =i j by(t)dt + j by (t)dt (3.8)

The definite integral of b(t)with respect to t over the interval [t;, t, ]
is

t t
jB(t)dt =i ngl(t)dt +] sz (t)dt (3.9)

<] t1
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We now write down a few properties of the integrals of vector functions.

PROPERTIES OF INTEGRALS OF VECTOR

FUNCTIONS

1. For a vector function f(t) and a constant o
jaf(t)dt _— j f(t)at (3.10)
2. For any two vector functions f(t) and g(t) and constants o and p:

j[o&(t)+ BG(t)]dt = aj f(t)dt +|3j§(t)dt (3.11)

DI

3. For a vector function f(t) and a constant vector

ja.f(t)dt = a.jf(t)dt (3.12)

QI

4. For a vector function f(t) and a constant vector

jaxf(t)dt - axjf(t)dt (3.13)

Let us now work out a simple example on integration of vector functions.

EXFIW@LE 3.1: POSITION VECTOR

Determine the position vector of a particle r(t) given that its velocity
function is:

V(t) = sinti — cost] + t%k
and the initial position of the particle (position vector of the particle at t =0)
is F(t=0)=i+]+k
SOLUTION B Using the definition of velocity, we can write the position
vector of the particle as the integral of its velocity as follows:

i) = IO - v - j v(t)dt (3.14)

dt

We write the integral in terms of the components of the vector function
V(t), as defined in Eq. (3.4):

r(t) = i"fsintdt—]jcostdm% J'tzdt

. . 13, -
=—costi—sintj+§k+c 0]

where C is an arbitrary constant vector.

To determine C we use the given initial condition. Substituting t =0 in
Eq. (i) we get

— ~ ~ ~

ft=0)=—i+C=i+j+k (ii)

67



Block 1

Vector Analysis

A table of standard
integrals is given at the
end of this block.

68

From this we get: é:2i‘+j+|2 (iii)

Substituting for C in Eq. (i), we can now write the position vector as a
function of time as:

- D
F(t)=—costi —sint] +%k Lo i +k

3
— (2 cost)i + (1-sint)] + (1—%)12 ()

Before we go further, let us summarize what you have studied so far:

INTEGRATION OF A VECTOR FUNCTION

e The integral of a vector function is defined as the integral of each
scalar component of the function.

e  This definition holds for both definite and indefinite integrals of vector
functions.

You may now like to work out an SAQ on what you have studied so far.

SAQ 1 - Integrating a vector function

a) Evaluate '[Kljtz jiA + [i%j]} dt

b) The acceleration of an object is a =—10k. Obtain its position as a

function of time t if its initial velocity is V(t =0) =i —k and its initial
position is F(t = 0)=2K .

In Unit 2 of BPHCT-131, you have learnt that many physical quantities can be
expressed as the scalar or vector products of vectors. We now study the
integrals of scalar and vector products of vector functions.

3.2.1 Integrals involving Scalar and Vector Products of
Vectors

Let a(t) and B(t) be two vector functions of a scalar t. Then for evaluating the
integrals 1, = J.[é(t).B(t)]dt and |, = J.[é(t)xﬁ(t)]dt, we first compute the

scalar and vector products in the integrands. Recall from Sec. 1.4 of Unit 1,
BPHCT-131 that |, will reduce to an integral of a scalar function of t with

respect to t. Similarly, 1, will be the integral of a vector function of t with
respect to t. Let us take an example to discuss the evaluation of |,. After that

you can work out another example.
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EWQ’LE 3.2: INTEGRAL OF A SCALAR PRODUCT

In free space a transverse electromagnetic (EM) wave propagating in the

x-direction has an electric field E = E cos%(ct — x)] and a magnetic field

B =By cos%(ct —x)k.Here c and A are, respectively, the velocity and the

wavelength of the EM wave and Eg =Byc. The energy flowing through a
volume V per unit time is given by

u:%(é.mé.ﬁ),

where D=¢gE and B = pgH.
Here g, and o are permittivity and the magnetic permeability, respectively,
1

€oMo
in one complete cycle of EM wave if its time period is T.

of free space and c = .Compute the total energy flowing through V

SOLUTION B The energy flow during time dt is given by U dt. So the total
energy will be the definite integral of U from t =0 to t =T, i.e.

T v v
UO=IUdt=EI(E.D+B.H)dt=E(lE+|B) 0)
T_’ . T_’ i
where |g =IE.Ddt and Ig IB Hdt
0 0

Both Iz and I are integrals of the type I;. So we shall first evaluate the
scalar products. Given that

E=Eg cos%(ct ~x)j (ii)
g = 2n -
D =¢ggE = ggEg cos—(ct — x) ]

A (ii)

Weget E.D=gyEZ cosz%(ct—x)

(iv)
Similarly, you can show that

. m2
B.H:B—Ocosz%(ct— X) (v)

1o

Substituting from Eq. (iv) and Eg. (v) into Eq. (i) we get

2
\Y > Byj .
Ug =—|goE5 +—|I (vi)

.
where (see margin remark) | = J.cos2 %(ct — X)dt =T§
0

2mC 271‘, ( = CT)
A T

cos? 2”0 £ (ct—x)

=Cos (Znt kx)
T

where k = 2n

ElatE UL

T
J-cosz 2}?( —x)dt

cos(ﬂ - 2kxj

I\)|H

+ dt

N |-

4
!

T

[
4 N N

I
4x

sin(ﬂ - 2kxj
T

0

—n[sin(4n—2kx)
—sin(=2kx)]+ r

= L(— sin2kx + sin2kx) +L
8n

T
2
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along the same
direction.
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2
B
Uo = | 6gE2 +-0- (vii)
4 1o
E2

2
B
—0 =¢oE? (viii)
1o

Hence Ug =V7T80E02

The method will be the same for integrating vector products expressed in their
component form.

You may like to solve an SAQ before studying further.

SAQ 2 - Integrals of scalar and vector products

Given two vector functions a(t) = ti+ 1-t) ]+t 2K and b(t) =3t % —t],
evaluate the integrals:

1 1
o) [Eo.bok  and b [l <bor
0 0

We now discuss line integrals of scalar and vector fields.

3.3 LINE INTEGRAL OF A VECTOR FIELD

In Unit 2 of BPHCT-131, you have studied that for a constant force, when the
displacement is not along the force (Fig. 3.1), the work done is the scalar
product of force and displacement:

W =F.d = (Fcos0)d (3.15)
In your school physics, you have learnt about work done by a constant force

and variable force. You may recall that when a variable force F(x) is applied

on an object along the x-axis, the work done in moving the object between any
two points x4 and X5 is an integral given by

W =TF(x)dx (3.16)

A well-known example of this is the work done in stretching a spring by a
length d. The spring force is a restoring force: F(x) = — kx, where k is the
spring constant. The work done is:

d
W = j (—kx)dx (3.17)
0

Let us now consider the most general case: a variable force applied on an
object moving along an arbitrary path in space. What is the work done by the
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force? Refer to Fig. 3.2. A planet is moving around the Sun in an elliptical
orbit under the gravitational force. How will you calculate the work done for
such systems?

Consider an object moving along an arbitrary path in space between the
points P and Q. Note that the path is a curve and the force F=F(x,y,z) is a
variable force (Fig. 3.3a). Let us calculate the work done by the force in
moving the object from P to Q along the path shown in Fig. 3.3a. We first
divide the path PQ in n tiny segments as shown in Fig. 3.3b. We define the
displacement of the object for each of these segments

asAl,Al,..,Al,... Al respectively. Let Al be the displacement for the i"
segment. The magnitude of the displacement for each segment of the curve
is almost equal to its length (read the margin remark) (inset of Fig. 3.3b).

Z
A

F (X2,¥2,23) Q

F (X,Y1,2;)
\ F (X3,Y3:23)
> Y

@) (b)
X

Fig. 3.3: a) An object moves under a variable force along the path PQ. The force
is different at different points along the path; b) the path is divided into
n segments and the displacement is defined for each segment.

Although the force is actually different at different points of the path, we
assume that it is constant over each of these segments.

Let the force acting on the object be Iflfor the first segment, IE2 for the second
segment, and so on. Let us consider the ith segment. What is the work done
by the force F, for the displacement Al, ? From Eq. (3.15), itis AW; =F .Al,.

The total work done in moving the object over the entire path is the sum of the
work done in moving the object over each segment of the path. We can write it
as:

n
W =F AL +Fp Alp +..+ R LAl +. Al =D TRA] (3.18a)
i=1

In the limit asn—w, we express the sum in Eq. (3.18a) as an integral along
the path between P and Q:
W = jﬁ.di (3.18b)
c

This is an example of a line integral along a path of integration C. It is the
path between the points P and Q along which the object moves. It should be a

N/

Fig. 3.2: A planet moves
around the Sun in an
elliptical orbit. The force
of gravitation on the
planet is a variable force.

ATn Q

The displacement for
each segment of the
path has its tail at the
starting point of the
segment and its head
at the final point of
the segment as you
can see in the inset of
Fig. 3.3b.

If the number of
segments n is large,
we can approximate
the length of the
curve by summing
over the magnitude of
the displacements.
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To write the equation of
the circle in the form of
Eqg. (3.20a), we write it

as:

y =ya? —x?
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smooth curve. We will explain what is meant by a smooth curve in the next
section.

Here we have defined the line integral in order to calculate the work done by
a force field in moving an object along an arbitrary path. We can define such a
line integral for any arbitrary vector field A along a path of integration C as
JAdl.

C
The line integral is a generalization of the concept of a definite integral. In a

b
definite integral If(x)dx , We integrate a function f(x) along the x- axis

a
between two points, a and b. The function is defined at every point in the
interval [a, b]. In a line integral, we integrate along a curve C and the integrand
(F.dlin Eq. 3.18b) is a function defined at every point on the curve. Note that
the path of integration can be any straight line or curve, in space or in a plane.

We now discuss how to calculate this integral. Let us write the force field Fin
terms of its component functions as F = Fl(x,y,z)f + Fz(x,y,z)] + Fg(x,y,z)R ,
and the displacement along the path as dl =dxi + dy] +dzKk . The line integral
of Eq. (3.18b) is then given by:

W = jﬁ. dl = j[Fldx + Fody + F3dz] (3.19a)
C C

If the force field is two-dimensional and the object is moving in the xy plane,
we can write the line integral as:

W = jﬁ. di = j[Fldx +Fody] (3.19b)
C C

Note that in general, F1, F, and F3 are functions of x, y and z. However, the

integrals are over either x or y or z. Therefore, you must express each

integral in terms of a single variable. This means, for example, to evaluate

the integral IFl (x,y,z)dx, we must express y and z in terms of x, so that F; is
C

a function of only x.

This is what you will learn about in the next section.

3.3.1 Representation of a Curve

In a plane, a curve can be described by an equation of the form:
y =f(x) (3.209)

For example,y = 4x? is the equation of a parabola and x* +y? =a? is the

equation of a circle of radius a with its origin at the centre. The coordinates of
a point on the curve described by Eqg. (3.20a) are given by (X, f(x)).

In three-dimensional space, we may describe a curve using a set of equations
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y=f(x); z=9(x) (3.20b)

The coordinates of each point on the curve are (x,f(x),g(x)). This is also

called an explicit representation. We may also describe the curve as an
intersection of two surfaces:

F(xy,z)=0; G(xYvy,z)=0 (3.20c)

This is called an implicit representation. Note that both F(x,y,z)=0 and
G(x,y,z) =0 represent surfaces in space.

In the following example, we use the definition of line integral in Eqgs. (3.19b)
and the representation of a curve in a plane given by Eq. (3.20a) to calculate
the work done.

Eﬂﬂ@ﬁf 3.3: LINE INTEGRAL OF A VECTOR FIELD IN A
PLANE

Calculate the work done by a force field F = 2xyf -y ] in moving an object
along the curvey = x?in the xy plane from (0,0) to (2,4).

SOLUTION B Using Eq. (3.19b) for the work done by a 2-dimensional

force field in moving an object in the xy plane with F; =2xy and F, = —y2

we can write:

W = [ (2xydx - y 2dy) 0)
C
The equation of the curve y = x?tells us how x and y are related along the
path C. Using this in Eq. (i) we get:
W = I[Zx(x2)dx —y2dy]
€

Since the coordinates of the initial and final points of the path are (0,0) and
(2,4) we can write the limits on x and y along the path as:

(ii)

0<x<2; 0<Ly<4 (iii)
And the integral of Eq. (ii) reduces to:
2 4
W = I2x3dx —Iyzdy
0 0
These can be evaluated as ordinary integrals:
2 4
4 3
W = ZL — y_ — _ﬂ (|V)
4 3 3
0 0

SAQ 3 - Work done by aforce

\~

Calculate the line integral of the force field IﬁizxyiA+(x2 +1)j from (0,0) to (1,1)
along the three paths labeled 1,1l and Il in Fig. 3.4.

Note that in all the
representations of a
curve, there is only
one independent
variable. This is
important, because
the line integral,
unlike a double
integral or a triple
integral, is an
integration over one
variable.

Note that each of the
integrals in Eq. (i) is
over a single variable.

y
*
DO  B(LY
Il 7 |1l
A
A
> > X
0(0,0) A(10)
|
Fig. 3.4
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4 (X(to) y(to) z(to))
P

AN

r(t)

X

Fig. 3.5: Parametric
representation of a
curve. At the point P,
the value of the
parameter is tg, the

position vector is
r(t,)and the

coordinates are
(X(t0),y(to),z(to))-

(b)

Fig. 3.6: a) Parametric
representation of the
path of integration;

and b) a closed path.
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In the next section we discuss another representation of a curve in space
which is useful for evaluating line integrals.

3.3.2 Parametric Representation

There is yet another representation of the space curve called the parametric
representation. In a Cartesian coordinate system, we may represent a curve
using the position vector function F(t) and a real parameter t, as follows:

F(t)=x(t)i +y(t)j +z(t)k (3.21a)

r(t)is the position vector of a point on the curve, as you can see in Fig. 3.5.
As the value of t changes, the head of the vector traces out a curve in space.

A point on the curve has the coordinates [x(t), y(t), z(t)]. The coordinates are
functions of the parameter t and for each value of t, we get a different point on
the curve.

Let us now learn how to evaluate line integrals using the parametric
representation of the path of integration. Sometimes, it is convenient to use
the parametric representation rather than Eqgs. (3.19a or 3.19b) as you will see
in Example 3.4.

Let us first write down the path of integration in the parametric representation.

The parametric representation of the path of integration C between two points
P and Q (Fig. 3.6a) is,

F)=xt)i+y(t)j+z(tk, t<t<t, (3.21b)
where t1 and t, are the values of the parameter t at P and Q, respectively.
The coordinates of P and Q are P [x(t1), y(t1), z(t1)] and Q [x(t), y(t), z(t)].
Remember that we have said earlier in this section that the path of integration
in a line integral should be a smooth curve. You may now like to know: When
can we say that Cis a smooth curve? C is said to be a smooth curve if
dr(t)

e r(t) asdefined in Eg. (3.21b) has a continuous derivative r'(t)= m

which is not equal to zero anywhere on C (t,<t<t,), and

e r'(t) is directed along the tangent to the curve at every point (Fig. 3.6a).

The unit tangent vector at each point on the curve is:

i-r (3.22)
)

Since we are integrating from P to Q, the path of integration also has a
specific direction (is oriented). We take the direction from P to Q as the
positive direction along the curve (Fig. 3.6a). We mark the positive direction
on the curve by an arrow. If the path is such that the initial and final points of
the curve coincide, as in Fig. 3.6b, [F(t,)=F(t, )], then the curve is a closed
curve or closed contour. When the integration is over a closed path C, the

symbol of integration J. is replaced by f

C C
Before you learn how to evaluate the line integral using the parametric
representation, we illustrate the parametric representation of a few simple
curves.
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E)CHM(PLE 3.4 PARAMETRIC REPRESENTATION OF

CURVES

Write down the parametric representation for the following:

a)

b)

C)
d)

A straight line between the points (0,0) and (1,2).

2 2

The ellipse X—2+y—2=1
a~ b

The circle x? +y? =a?

A circular helix

SOLUTION B In all four parts, we will express the equations of the
curves in terms of a single parameter, say t.

a)

b)

From school mathematics, you know that the equation of the straight
line between any two points (xq,y;)and (X,,y») is:

y—Y1=(y2_ylj (X —=X1)
X2 — X1
Y=Y1 _ X=X
Yo—Y1 Xz2—X1

or

(i)
The LHS of Eq. (i) is a function of only y and the RHS is a function of
only x. We can, therefore, equate this to a parameter t. Then
Y—¥1 _ X—X1
Y2-Y1 X2—-X1
or yt)=y1+(y2 -yt and X(t) =xq +(X2 —x)t (i)

Egs. (i) and (ii) are the parametric equations for x and y. Thus in
general

=t

F(t) =X, + (X, = XU +y; + (Y, — Y] (3.23)
Using (x4,Y1) =(0,0) and (X5,y»)=(1, 2) in Eq. (i), we get
X(t) =t; y(t) =2t (iii)

To get the end points of the straight line in terms of t, we use Eq. (iii)
as follows:

Let t =t; for the point (0, 0) and t = t, for the point (1, 2). Then since
x(t) =t and y(t) = 2t, we get

X1=X(1)=t1=0, y1=y(t1)=2t1=0 =1;=0
and Xz =X(t2) =tz =1 yo=y(t2)=2t =2 =ty=1
Therefore, in terms of the parameter t, the initial point of the straight
line is t; =0 and the final pointis t, =1. The parametric
representation of the straight line between (0,0) and (1,2) is:

ft)=ti+2tj; 0<t<1l

2 2

Note that for x_+y_2 =1, the values of both gand% should lie

a’? b
between -1 and 1. This suggests (see margin remark) that we can use
the identity cos? t + sin? t =1 to write the parametric representation:

The values of sin t
and cos t lie between
-1and 1.
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d)

y

X .
Z =cost; =sint
a

= X(t)=acost and y =bsint

So, an ellipse with its centre at the origin and semi-major and semi-
minor axes a and b respectively, has the parametric representation
(Fig. 3.7a):

r(t) =acosti+bsint] 0<t<2rn (3.24)
The parameter t is the angle the position vectorr(t) makes with the

x-axis. As t changes from 0 to 2r, the tip of the position vector traces
the entire ellipse starting from the point A on the x-axis. The coordinate
of each point on the ellipse is (a cost, b sint).

Note that if you want to take only a part of the ellipse, you have to
choose the range of t accordingly. For example, for the part of ellipse
in the first quadrant we write;

r(t) =acosti +bsint] O<t<m/2
Substituting a = b in Eqg. 3.24, we get the parametric equation of a
circle x* + y* = a* (Fig. 3.7b):
r(t)=acosti-+asint] 0<t<2rn (3.25)
The coordinate of each point on the circle is (a cos t, a sin t).
The parametric equation for a circular helix (Fig. 3.7¢) is:
r(t) =acosti+asint j+btk; b=0, 0<t <2m (3.26)

y
y A T

0
b aI t
LN

(@) (b)

— 1 (1)

»
>

a—— \t

(€)

Fig. 3.7: Parametric representation of the a) ellipse; b) circle; ¢) right circular

helix, in which the curve lies on the cylinder X2+ yZ: a’.
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SﬂQ4 - Parametric representation of a parabola

Write down the parametric representation for the parabola y = x? between
the points (0,0) and (2,4).

The parametric representation of a curve has several applications. In Usually in Physics we
Mechanics the parameter t in Eq. (3.21b) may be used to represent time and use the symbol F to
we can use the vector function r(t) to determine the velocity and acceleration denote force fields and
of an object moving along a curve. We now use the parametric representation dr to indicate

of the path of integration to define the line integral of a vector function along displacement. Here we
the path as: use the dl instead

merely to highlight that
we are talking about an

J- Jg[F[r (1] dr(t)} (3.27) infinitesimal
C

displacement

ty
along a curve.

IE(F(t)) is a vector function , r(t) is defined in Eq. (3.21b), t; and t, are the end
points of the path.

This is now the definite integral of a scalar function. We can write

dr d ~ - - By replacing x,y,z in
a o dt x(O)i+y(t)]+ Z(t)k] the vector function
F = FL(xy.2)i + Fa(xy.2)]
_ dx(t) Ty dy(t) ]:+ dz(t) K (3.28) +F3 (x,y,2)K
dt dt dt by the parametric
- A A y functions x = x(t);
Using F(r(t))=Fy(t)i + Fo(t)j + F3(t)k (see margin remark) and Eq. (3.27) we y =y(t);z = z(t), we
get: can write the vector
function as a function
tor - to of the parameter t.
J.[F%Hd I[F )y & dx(t) A0 dy(t) FEs(t) dz(t)} (3.29a)
ty ty

Cs

For a two-dimensional force field F = Fy(t) i+ Fs (t)] , we can write the line

integral as:
ar dx(t) dy(t)
tjl {F o }dt tj; [Fl(t) i Ok }dt (3.29b)

Note that the quantity in the bracket in Eq. (3.29b) is a scalar function of a
single variable t. We can say that the integral is along the t-axis, in the
direction of increasing t. It exists when C is a smooth curve or even a : _

_ _ ' _ Fig. 3.8: The curve
piecewise smooth curve. In Fig. 3.8 you can see an example of a curve which  petween A and B is

is piecewise smooth. piecewise smooth. It is
made up of the smooth
Let us now write down a formal definition of the line integral of a vector field curves Cq,Cyand Cg.

using the parametric representation of the path of integration. 77
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LINE INTEGRAL OF A VECTOR FIELD

If a vector field Fis continuous on a curve C which has a parametric
representation r(t) with t,<t<t, and r(t) is differentiable, we define the

line integral of the vector field F along the curve C as:

W = j Fdl= j [ﬁ[(t)].%} dt (3.30)
C C

Remember that there can be more than one way of parametrizing a
curve.

2

For example, a circle x2+y2:a can be represented either as

f(t)=acosti+asintj or f(t)=asinti +acostj
The value of the line integral does not depend on the chosen parametric
representation of the path of integration.

In the following example, we calculate the line integral for a two-dimensional
vector field.

EXHM@L%: 3.5" LINE INTEGRAL OF A VECTOR FIELD

Calculate the line integral of the vector field F(x,y)=—y i +x ] over the
curve F(t)=costi+sintj with O<t<r.

SOLUTION B We use Eg. (3.30) to calculate the line integral. Let us
write down the steps of this calculation.

Step 1: Calculateg—:.

dF d -~ . < . -~ -~ .
— = —|costl + sint||]=-—sIntl + cost |
it dt[ il j (i)

Step 2: Write IE[F(t)] in terms of the parameter t.
F is the vector field F(x,y)=—yi+x j. We write F in terms of the
parameter t by replacing x and y in IE(x,y) by
x = x(t)=cost, y = y(t) = sint.
F=—sinti +costj (i)

Step 3: Determine IE.(;—I.
Using Egs. (i) and (ii), we can write :

F'd_': = [ sinti+ costj|[- sinti+ cost]]|=sin2t+ cos2t=1 i)
ty -

Step 4: Evaluate I[F.d—r}dt.
; dt
1

The limits of integration are the limits of the parameter t for the path of
integration. These are given as t; =0and t, = . So using Eq. (iii), we get:

to _dr T
I{F.E}dt - _([dt -

ty
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Let us now work out another example of a line integral of a vector field. We
calculate the work done by a three-dimensional force field in moving an object
along a given path.

fﬂﬂ@ﬁf 3.6 WORK DONE BY A FORCE FIELD

Determine the work done by the force field F(x,y,z) = xyiA+ yz]+ zxk in
moving an object along the curve r (t) =tiA+t2]+t3|2 from (0,0,0) to (2,4,8).

SOLUTION B We use Eg. (3.29a) to calculate the work done by the force
field. Comparing the expression for r (t) with Eq. (3.21b), we can write:

X(t) =t, y(t) =t?, z(t)=t> (i)

Note that we have to determine the limits t; andt, of t for the path of

integration as these are not given in the problem. The coordinates of the
starting and ending points of the path are (0,0,0) and (2,4,8). Putting these
values in the parametric expressions for the coordinates in Eq. (i) we can
determine t; andt, as follows:

X(t]) =t; =0, y(t)=t;°=0, z(t;)=t;>=0=1;=0 (ii)
and
X(t) =t =2, y(tp)=ty2=4, z(ty)=t,° =8=t, =2 (i

To calculate the work done we now have to evaluate the line integral
2

_ dr :
W:IF.Edt (iv)

following the steps outlined in Example 3.5. Here
dr d . - 2 2 3" o - 2"
— =—[ti+t°j+t°kK]=i+2tj+3t°k \%
el J ] ] v)
We next write F terms of the parameter t by substituting X, y, z from Eq. (i)

to get:

FIr(t)]=t3i+t5]+t4K (vi)
Using Egs. (v) and (vi), we calculate:
IE(F(t)).2—I=(t3f+t5]+t412).(f+2t]+3t2|2)=t3+5t6 (vii)

The work done is:

2 t4  _tf 2
W=I(t3+5t6)dt= - 4+5_
0 4 7 0

668 .
=——units
7
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Fig. 3.9: The curve C
between points A and
Cis made up of the
curves C; between A
and O and C, between
O and C.

Fig. 3.10: The line

integral over the path

C, will be the negative

of the line integral

over the path C;
JFdl =— [FdT

Co Cs
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It is convenient to use the parametric representation when the path of
integration is a circle, an ellipse, a helix or a parabola. However, it is not
always necessary to use a parametric representation to evaluate a line
integral. In Example 3.4 the integral was evaluated using Eq. (3.19b). In some
questions, as in SAQ 3, the path of integration may be along the x, y or z-axes
or a combination of all these. In that case, using Eqg. (3.19a or b) to evaluate
the line integral will be more convenient than using Eq. (3.30).

In evaluating line integrals we can use any of the equations: 3.19a, 3.19b,
3.29a, 3.29b or 3.30.

SAQJS - Lineintegral of a vector field

Calculate the line integral of the vector field F=—7/r3 along the curve
F(t)=ti +1j+tk , with 1<t <3.

Before you study further, you should learn some properties of line integrals.

PROPERTIES OF LINE INTEGRALS

The line integral of a vector field F along a curve C has the following
general properties:

1. For aconstanta,

Ialz.dT:aIIE.dT (3.31)
C C

2, jhé dl = jﬁ.dT +jé.dT (3.32)
C C C

where G is another vector field which is continuous over the curve C.

3. Ifthe curve C is made up of two curves C; and C, as shown in
Fig. 3.9, we have:

j Fdl = j Fdl + j Fdl (3.33)
C C1 Cy

Note that the orientation of the curve is the same in all the three

integrals. If the orientation of the path is reversed in any line

integral, as in Fig. 3.10, the integral gets multiplied by a negative
sign.

So far we have discussed line integrals of the form IA.dT. There are other
C
types of line integrals. Here we only state these forms.

3.3.3 Other Types of Line Integrals

There are mainly two other types of line integrals that you may need to use.
These are:

) jfdl
C
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and
i) j Axdl

C

where f and A represent a scalar and vector field, respectively. While (i) gives

a scalar, (ii) gives a vector.

In the next section we discuss conservative vector fields, which are an

important concept in physics. In your mechanics course BPHCT-131 you have

studied about central conservative forces which are an example of a
conservative vector field.

3.4 CONSERVATIVE VECTOR FIELDS

From the examples you have worked out so far, you have seen that the
equation of the path of integration (either in a parametric form or in terms of
the Cartesian coordinates) is used to evaluate the line integral. In general,
then, the value of the line integral depends on the path (as in SAQ 3).
However you will find that in some cases the value of the line integral of a
vector field between any two points does not depend on the path of
integration between these points. This notion of path independence of the
line integral of a vector field is used to define a conservative vector field:

A vector field F, for which the line integral (.[ IE.dT) between any two

points P and Q, has the same value for all paths that begin at the point P
and end at the point Q is called a conservative vector field.

In other words, the line integral of a conservative force is path
independent (Fig. 3.11).

The force of gravity is an example of a conservative force field. You know that
the work done in lifting an object of mass m to a height is the same.
Irrespective of the path taken, the work done is (- mgh). Thus, the force of
gravity is a conservative force. The electrostatic force field is also
conservative, as you have also studied in Unit 10 of BPHCT-131.

There are three different ways of saying that a vector field F is conservative.

And all of these are equivalent to saying that the line integral of the
vector field is path independent. These are as follows:

1. The vector field can be written as the gradient of a scalar field @

F=V® (3.34)
2. The curl of the vector field is zero or the vector field is irrotational:

Vx F=0 (3.35)
3. The line integral of the vector field along a closed path is zero:

{ﬁ.dl” -0 (3.36)

C

The line integral of a vector field over a closed path is also called a closed
contour integral or a loop integral. It is denoted by a small circle
superimposed on the sign of the integral as shown below:

j? Fdl (3.37)
C

P

Fig. 3.11: Three different
paths of integration
between two points P
and Q, C;, C, and Ca. If
the line integral of a
vector field Fhas the
same value for all these
paths then F is a
conservative vector
field.

If the line integral of

F depends on the
path between the two
points, then it is
called a non-
conservative vector
field.
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Note that we can add a
constant V, to the scalar
potential V, to find
another potential function,
V + V,. This is because
for any constant

Vo, V Vo =0 and
therefore we can write
F=-V (V +Vy). So the
scalar potential is
arbitrary up to an additive
constant.

f is the unit vector along
the position vector r from
the origin to the point P.
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For any vector field F the closed contour integral along a curve C is also
called the circulation of the vector F around the path C.

SAQ 6 - Circulation of a vector field

Calculate the circulation of a vector field ,5\=xyiA+(3x2 +y)] around the circle

x2+y2=4.

Let us now introduce another concept which is used very often in physics, that
of the scalar potential associated with a conservative force.

3.4.1 Scalar Potential

In mechanics we define the potential energy as the negative of the work done
in a process. For example, if we lift a mass m to a height z the work done by
the force of gravity is W =®=—-mgz . However, the potential energy of the
mass increases, and if the potential energy on the surface of the Earth is
taken to be zero, the increase in the potential energy V = mgz. In other words,
the potential energy is the negative of the work done. So,

V=-W=-0= —jﬁ.dT (3.38)
C

For every conservative force F , we, therefore, define a function V which is the
scalar potential function V =—® such that F=—VV .

Let us now work out an example in which we determine the scalar potential for
a vector field by evaluating the line integral.

EMM@L‘E 3.7 SCALAR POTENTIAL FOR A
CONSERVATIVE FORCE FIELD

Determine the scalar potential for an electric field due to a point charge g
placed at the origin.

SOLUTION B The electric field due to a charge q placed at the origin of
the coordinate system at a point P (X, y, z) which is at a distance r from the
origin is the force on the unit charge placed at that point and is given by:
qr q(xi+yj+zk)

T3 (X2 +y2+22)3/2

E-Yr_
r2

We can check that the electric field is conservative by calculating the curl of

the the field. Using Eq. (2.7a) for the curl, we get:

<
X
T
Il
N ,%’|Q) =

i
L
oy

y

x >Q<)|Q) —

3/2

(x2 +y2 +22)3/2 (x2 +y2 +22)3/2 (X2 +y2 +22)
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i i X _i z
3/2 /2
oz (X2+y2+22) OX (X2+y -|-22)3
ik|Z y 0 X ()

X 12{ oy /2
% (x2+y2+22)3 %y (x2+y2+22)3
Calculating the partial derivatives in the first term in Eqg. (i) we get:

z 3yz

0
%y (x2+y2+22)3/2 (x2+y2+22)5/2

9 y _ 3yz

. (x2+y2+22)3/2 : (x2+y2+22)5/2

il 2 _ y 0
o (x2+y2+22)3/2 o (x2+y2+22)3/2

Similarly, the remaining two terms in Eq. (i) are also zero.

VxE=0
To determine the scalar potential associated with the field we calculate the

negative of the work done in bringing the unit charge from infinity to the
point P, which is:

r r q r q
-JRdi=-] Ghart=-] S
o0 o0 o0
You will learn about
q r q electric potential in detalil
= [—} =— in Units 8 and 9.
rle I

You have seen that when a vector field is irrotational (curl of the vector field is

zero), it can be written as the gradient of a scalar function, which we call the A vector field with a zero
scalar potential. What if the vector field were to be solenoidal? This brings us divergence is called a
to the concept of a vector potential, which finds many applications in Physics. solenoidal vector field.

Let us now study about this.

3.4.2 Vector Potentials

Consider a solenoidal vector field F . So V.F=0 . Recall that you have

studied in Unit 2 that for any vector field A V. VxA): 0. Therefore we can

write:
83



Block 1

Vector Analysis

V.F=0=F=VxA (3.39)

A is called the vector potential associated with a solenoidal vector field F.
Just as the scalar potential for a conservative field is not unigue and you can
add an arbitrary constant to it, similarly the vector potential for a solenoidal
field is also not unique. You can add the gradient of an arbitrary function,

Vf (X, y, z) to the vector potential, and the result would not change because
the curl of a gradient of a scalar field is zero (%x(ﬁf ):0) .So:

V(A +Vf )|=VxA=F (3.40)

3.5 SUMMARY

Concept Description
Integral of a vector B For a vector function in three dimensions defined as
function

Properties of integrals m
of vector functions
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b(t)=by(t)i +b,(t)j+bs(t)k the indefinite integral of b(t) is given by:
jB(t)dt =i“jb1(t)dt + jjbz(t)dt + ijg(t)dt
The definite integral of b(t) over the interval [ty, t, ]is:

t ) t t
jB(t)dt = i“jbl(t)dt +]jb2(t)dt+12 jbg(t)dt

i t ) ty

For a vector function in two dimensions defined as b(t)=b;(t)i +b,(t)j , the
indefinite integral of b(t) is given by

jB(t)dt =i“jbl(t)dt 4 ]_[bz(t)dt

The definite integral of b(t) over the interval [t,,t,] is
t, t, t
j b(t)dt =1 j b,(t)dt +] j b, (t)dlt
t t t

For any two vector functions f(t) and g(t) we can write
[[fo+gmldt = [ feye + [yt

For the product of a vector function f(t) and a constant a we can write
jaf(t)dt = a jf(t) dt

For a vector function f(t) and a constant vector a, we can write
j a[f(t)]dt =a j f(t)dt

jax [f(t)()]dt = axjf(t)(t)dt
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Integrals of the scalar
and vector products of
vector functions

Line integral

Work done by a force
field F

Line integral in the
component form

Line integral of a vector
field using the parametric
representation of the
path

Properties of the line
integral

Circulation of a vector
field

For any two vector functions of a scalar t, a(t) and b(t), to
evaluate the integrals I; = Hé(t).B(t)]dt and I, = Hé(t)xB(t)]dt, we

first compute the scalar and vector products in the integrands. We
then integrate the result.

A line integral of a scalar or a vector field is a generalization of the
single integral where the path of integration may be any curve in
space. It can appear in three forms:

jfdl,jA.dT and ijdT
C C C

The work done by the force field F in moving an object along a
path C between the points P and Q is given by the line integral

W:jﬁ.df
C

The line integral of a three-dimensional force field

F= Fl(x,y,z)iA + Fz(x,y,z)] + F3(x,y,z)I2 along a path C in space can

be written in terms of its component functions as:

W = [Fdl = [[Fidx +Fady + Fadz]
C C
The line integral of a two-dimensional force field
F= Fi(x,y)i + F2(x,y)j along a path C in the xy plane can be
written as:
W :IIE.dT = I[Fldx +Fody]
C C
The line integral of the vector field F along the curve C which has
a parametric representation r(t) with t; <t <t, where r(t) is
differentiable is:

to

[ Edi - f[Erqy 9r®)
W _j Fdl _J{F[r(t)].(jt}dt
C ty
For a constant o,
jaﬁdlzajﬁdf
C C

I[ﬁ+é].dT=Iﬁ.dT+Ié.dT for two vector fields G and F .
C

If the path of integration C is split into two curves C; and C,
[Fdl = [Fdi+ [Fdl
C G C,

If the orientation of the path of integration is reversed in any line
integral, the integral gets multiplied by a negative sign.

For any vector field F the closed contour integral along a curve C

flf.df is also called the circulation of the vector F around the path C.

C
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Conservative vector fields

Q(11Y)
“-c,
—’y

B(110)

Fig. 3.12: The path of
integration between
the points P and Q for
TQ7.
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B There are three different ways of saying that a vector field Fis

conservative or that the line integral of the vector field is path
independent:

e The vector field can be written as the gradient of a scalar field
®: F=Vd

e The curl of the vector field is zero: VxF=

e The circulation of the vector field is zero: $F.dl =0

O'—e—. 01

3.6 TERMINAL QUESTIONS

1.

Evaluate the following integrals:

T

i) I:I[4sintf—cost]+(2—t)l2]dt
0
2

i) 1= [[t2i +tetj+ntk] ot

1
Obtain a function a(t) which satisfies the relation
dé(t)

- =Jti+ COSTC'[)]-i—( jk given that a(1) =2i + 3 j+4K.

Evaluate J.{a(t) ()}dt given that a(2) = 2i - 3]+4k and

a(l):I +j+5k.

1
Evaluate J[é(t)x ()}dt given that a(t) = 2ti + (1—t) j+t 2k .
t

A two-dimensional force field is defined as F = d)gq—_izl) where k is a
X +y

constant. Compute the work done by this force in taking a particle from

point P(1,0) to Q(0, 1) along a straight line.

Determine the work done by a force |3=(x—3y)f+(2x—y)] in moving a

particle along a curve in the xy plane given by x=2t;y =3t2 fromt=0to
t=2.

Calculate the line integral of the vector field

F=(6x2 +6Y)i —14yz ] + 10xz° k over the path C (PABQ) between the

points P(0,0,0) and Q(1,1,1) defined by three straight line segments PA,
AB and BQ shown in Fig. 3.12.

An object of mass m moves along a curve
r(t)= t2 +cost ]+ sint k, 0<t<1.Calculate the total force acting on the

object and the work done by the force.
Show that the line integral of the vector field A =(2xy + 1)iA+(x2 - 2y)]

between the points (0, 0) and (2,1) is independent of the path between
these points.
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10. Calculate the circulation of the vector field ﬁ=y2f+xy] around the closed y
A

path along the parabola y = 2 x* from (0,0) to (1,2) and back from (1, 2) to
(0, 0) along the straight line y = 2x as shown in Fig. 3.13.

3.7 SOLUTIONS AND ANSWERS

F(t)\

Self-Assessment Questions

a 4 2 2t
1. a) I=i dt+j | —dt 0(0,0)

) J.1+t2 : J.1+t2
. VO Fig. 3.13: Figure for
= (4tan_1t)| + In(1+ '[2)] +C TQ 10.
b) We use Eq. (3.4) to write down the expression for the velocity of the
object as:
Vi(t)= jadt =-j10|2dt =10t k+C; (i)

To determine 61 (the constant vector) we use the initial condition on )
N a A - " . Let u =1+t“then
the velocity v (t=0)=i—k. Substituting t = 0 in Eq. (i) we get:

du
. — P = — =2tdt
V(t =0)=C, =ik (ii) dt

and J-

2y [
1+t u

=Inu=In(1+t?)

Substituting for él from Eq. (ii) into Eq. (i) we get
V(t)= i —(@+10t)k
To determine the position vector r(t) we use Eq. (3.4) to write:
F(t)=[(t) ot = [[i~(a+20t)k)] o
=ti—tk—5t°k+C, (iii)
To evaluate 62 we substitute t = 0 in Eq. (iii) and using the given initial
position vector T (t=0)= 2k we get:

F(t=0)=C, = 2k (iv)

Substituting for 62 from Eq. (iv) into Eq. (iii) we get the position vector
of the object:

r(t)=ti+(2-t—5t%)k

2. a) alt)b@)=[ti +@—t)j+t%K].[Bt% —tj]=3t> —t1-t)=3t> +t° -t
C (eyEelar - [lar 2, e2 ettt 2] 7 ...
B Ha(t).b(t)]dt_j(?;t +t —t)dt{7+§—3} =55 Pk
0 0 0
b) é(t)xB(t):ltiAnL(l—t)]+t2I2Jxl3t2f—t]J=t3f+3t4]+(3t3—4t2)I2

1 1

- e xb)ldt = [|t37 +3t%] + (3t - at?)k |dt
Jlo=6eke - | |
0 0

1
th. 3t°. (3t 4. .
=|l—i+—j+|——-——K 0]
4 5 4 3 0
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integration for SAQ 3.
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Vector Analysis

or Jl'[é(t)xﬁ(t)]dtzihgj?—élz
0

3.  We evaluate these integrals using Eq. (3.19b) with
F=xy andF,=x*+1
Along the path | the integral is the sum of the integrals along the straight
line segments OA and AB (see Fig. 3.14):
| =[Fdi= [Fdi+ [Fdl= [[Fadx+Fydy]+ [[Fedx+Fydy]
| OA AB OA AB
= I[xydx +(x2 +1)dy |+ I[xydx +(x2 +2)dy] (i)
OA AB
Along OA,
0<x<1l;y=0=dy =0 (i)
Along AB

0<y<1lx=1=dx=0 (iii)
So substituting from Eqgs. (ii) and (iii) into Eq.(i) we get
1
=[xz +dy]=[ @+ Ddy =[2y]5 = 2
AB 0

Along the path Il the integral is the sum of the integrals along the straight
line segments OD and DB:

= [Fdl = [Fdi+ [Fdi= [[Fxdx+Fydy]+ [[Fxdx+Fyay]
Il oD DB oD

DB
= I[xydx +(x2 + dy ]+ I[xydx +(x2 +1)dy] (iv)
oD DB
Along OD,
0<y<1;x=0=dx=0 (V)
Along DB,
0<x<ly=1=dy=0 (vi)

So substituting from Eqgs. (v) and (vi) into Eqg.(iv) we get

1 1 1 X2 1 3
Iy = Idy+ .[xdx =jdy +.[xdx=[y]0 +[7L =5
oD DB 0 0

Along the path Il the integral is the integral along the straight line
segment OB:

I = jﬁ. dl = jﬁ. dl = I[dex +Fydy]= j[xydx +(x2 +1)dy]
I OB OB OB
(vii)
The equation of the straight line OB is y = x. The limits on x and y are
0<x<1 0O<y<x<1 (viii)

So substituting from Eqgs. (viii) and y= x into Eq.(vii) and using the
methods of Example 3.3 we get:
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1 1
= I[xydx +(x2 +1)dy] = _[xzdx +I(y2 +1)dy

On evaluating these integrals we get

3 3 1
3 o 3 0 3

As you can see, the value of the line integral along each of these paths is
different.

Wl
w| ol

4. The parametric equation of the parabola y = x* (Fig. 3.15) is:
x(t) =t,y(t) =t>

You can check that this satisfies the equationy = x2. To obtain the end

Parabola

points, we write y 4

X(t)=t1=0; y(ty)=tf =0=1t;=0

=|
G
N—

and

2
X(tp) =ty =2, y(ty)=t5 =4=ty=2 (t.t)
So the parametric representation is ;
F(t) =ti +t2]; 0<t<2
5. We use Eq. (3.27) to evaluate the line integral with: Fig. 3.15
= r Xi+yj+zk
F=-—=- T() =ti+tj+tk;x(t)=y(t)=z(t) =t
r3 (X2 +y2 + 22)3/2

and t1 =%t =3
The derivative of r is:

dr

pr d[tl+t]+tk]-l+]+k (i)

In terms of t, we can write F as:

. ti+t]+tk ti+t]+tk 1 [ = o],
F(rt) = _(t[+t2+t2)3/]2 == [ (3t%)°2 ]::_3\/§ {2 [I + J+k] (ii)

Using the results of Egs. (i) and (ii) in Eq. (3.27) we get:

N

343 t2 -

6. Using Eq. (3.25) we write the parametric equation for the circle C

x? +y2=4as:

r(t)=2costi + 2sintj, 0<t<2xn (i)

Writing down Ain terms of t using Xx(t)= 2cost;y(t) = 2sint we get: 89
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27
Ignztcostdt
0

0
= Ju?du=0 (using
0
u =sint anddu = costdt)

2n

Icost dt=— sint|é7T
0

0

T Zt 2n

2 .
.[sint costdt :sz
0

0

90

A(F(t))=4costsinti+ (12 cos2 t + 2sint)j (ii)
Differentiating Eq. (i) w.r.t. t we get

a _ sinti+2cost]
dt

Using Eq. (3.27), with F = A, we get the circulation of A as (read the see
margin remark):

2
f,&.d”= 'fn[4costsintiA+ (12 cos? t + 2sin t)j].[- 2sinti+2cost j ot
c 0

= I _—85in2 t cost + 24cos® t + 4sint cost] dt

27
= j _—83in2 tcost+24(1- sin? t)cost +4sint cost] dt
0

2n

= j[—325in2tcost+4sintcost+24cost] dt =0
0

fAdI=o0

C

The circulation of the vector field is zero.

Terminal Questions

1. i) I=[4sintdt-]j[costdt++k [(2-t)dt
0

0 0

-~ T e T P t2 "
=i[-4cost]y —j[sint]y +k]| 2t 5

0
" 2 \.
=8i+(2n—n—jk
2

2
i) |=Ht2i"+tet]+lnt12]dt
1

3T 7
— s N 2 B 2 ~
= {5 LI +[tet—etfj+[tlnt—t]1k =§| +e21+[2ln2—l]k

2. Using Eq. (3.4) with B(t)z\/ﬁ + (COSn‘t)] +(%)R we can write:

a0 = [| VT +(eosm) (T ka4
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where C is a constant vector. Then

At) = 3’2 S'”’“tj+4lntk+c 0

Substituting t = 1 in Eq. (i) and given that a(1) =2i +3 ]+4I2 we get:

at=1 —|+C ii

t=1)= 3 (ii)
=2f+3]+4l2

-~ Ar A o

= C=§| +3j+4k (iii)

Substituting for C in Eq. (i) we get:

sinrwt

é(t):é(t3/2 +2)f+( +3j]+(4|nt+4)|2

3. For any vector a(t) we can write:

d ey 2] = da(t) | da(t) =, =, da() .
a[a(t).a(t)] =a(t).— - Al = 2{a(t).T} (i)

or
dat) 1d

it~ 2 g A©A)] (i

alt).—=~

Then we can write:

... dagt 1d 15 1

{ 0. 20 | - [5 @00 =2 el i) Jla0 a0k
Using a(2) =2i —3]j+4k anda(l) =i +j+5k, we get:

[ { (t). da(t)}dt - %[5(2).5(2) _A(.AQ)- %[29 _27]=

4. For any vector a(t) we can write:

{(t) da(t)} dzit)xdzit)+é(t)xdd?§t)zé(t) ddagt) 0
s @x@ﬂ} So we can write:
dt = dt
. Xdzé(t) d da(t) )
a(t) e [ a(t)x } (i)
Therefore,

fle.dzamy|, tdf=.. da®)], .=, da()
ﬂa(t)x 2 }dt—_([a{a(t)xT}dt_!d[a(t)x?} (i)
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The integral is then:
J { a )}dt —{ (0)x da(t)} )
0 0
Given that a(t) = 2ti + 1-t) ]+t 2K we can write:
- da a A oa -
ax-g gat) _ o7 _jiotk
dt
ok da(t
ot 1ot 2 At)x a()(a|+a £) J+t 2R x (27 - j+2tk)= (2t~ )i 2% -2k
2 -1 2t
(v)
1
I[ a0 aa)}dt_{ O daa)}
0 dt? 0
=i -2]
5. In order to evaluate the integral we have to express dr and Fasa
Y i) function of the same parameter, say t. The equation of PQ (Fig. 3.16)as
explained in Example 3.4 is:
Q(0.1) .
X+y=1=y=1-x ()
X This can be expressed in the parameteric form as x(t) =t ;y(t)=1-t,
P (1,0)

Fig. 3.16: Figure for TQ 5.

Let

1
Uu=t-—=du=dt
2

=2 tan—1(2u)]1,1£2 =-7

92

where t goes from 1 to 0. Following the steps in Example 3.5, we first write
‘he position vector:

IE_ktH(t_l);
t2 +(1-t)
= _Ke-1f g3 Dk
.—t— e (1_ 2 = 2 _ T o2
+(1-t) 2t° -2t+1  2t°-2t+1

The work done is calculated using Eq. (3.30) as:

0

W
y ol -2t (ii)
Cokpoodt ki dt
=5\ "5 |
21t2—t+; 2ifi-1) .1
2 4
= _;(_n) = k—zn (read the margin remark)

Alternative Method

The integral can be evaluated using Eq. (3.19b) as well, as follows:
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Y e X
S x24y2’ P2 X2 +y2
as:  [Fdi= j{— ky 2}dx+J[ kx z}dy (i)
PO sl X +Y Pl X" +Y

The equation of the straight line PQisx+y =1
y =1-xand dy = —dx, (iv)

X+y=x+(1-x°=2x"-2x+1 (v)
Note that the integral
evaluated in Eqg. (vi) is the

- — xdx + (x — L)dx dx krt . same as the integral you
jF.dr - .[ =k I =— (Vi) evaluated in Eq. (ii

2 _ 2 _ g. (ii).
PO PO 2xXc —2x +1 X:12x 2x+1 2

Substituting from Egs. (iv) and (v) into Eq.(iii) we get (see margin remark):
0

6. We use Eq. (3.29b) to evaluate the line integral with:
F=(x-3y)i + (2x—y)j, x(t)=2t,y(t)=3t2, t;=0:t, =2 (i)

From Eq. (i) we write:

x'(t) =2, y'(t) = 6t (i)
In terms of t, we can write the components of Fas:
Fi=(x-3y)=2t-9t2, Fp =(2x —y) = 4t — 3t2 (iii)
Using the results of Egs. (i) and (ii) in Eq. (3.29b) we get:
2 2
| =I(F1 X'(t) + Foy'(t))dt = j(4t —18t2 + 24t2 —18t3 )dt
0 0
4 2
. [th +2t3 —9t—} - 48
2 o

7. We calculate the line integral of the vector field using Eq. (3.19a) with:
Fx = (6x2 +6y), Fy =—14yz, F, =10xz2. Then

I :J'[(6x2 +6y)dx — (14yz)dy + (10xz2 )dz]

C
We use the path C between P and Q shown in Fig. 3.17. It consists of the ,
straight line C; from P (0,0,0) to A(1,0,0), then the straight line C,from A
A(10,0) to B(110) and finally the straight line C5 from B(110) to 0011
Q(111). Using the property of the line integral given in Eq. (3.33), we can
write the line integral along the path C as: _-C3
| =lpa +1aB *+1BQ P(0,0,0) Y N R
Cl\ >y
= |[(6x2 + 6y)dx — (14yz)dy + (10xz2)dz]
JA A(10,0) B(1,1,0)
+ J-[(GX2 +6y)dx — (14yz)dy + (10xz2 )dz] ® X ¢,
AB Fig. 3.17: The path of
+ I[(GXZ +6y)dx — (14yz)dy + (10xz2 )dz] integration between the
BQ points P and Q for TQ 7.

Along PA, 0<x<1ly=2z=0 =>dy=dz=0 93
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1 2 6x°3 '
lpp = J’ 6xZdx =| =~ | =2 (ii)
x=0 0

Along AB: 0<y<1x=1z=0=dx=dz=0

1
g = j 14yzdy =0 (iii)

y=0

Along BQ,0<z<1, x=1y=1=dx=dy =0

1 3 1
And  lgg = [10xz%dz {102 } _10 (iv)
3 3
z=0 0
o =2+O+E=E
3 3
r
8. We first derive an expression for the acceleration of the object: a = pres
d—r:g[tzin+cost]+ sintR]z 2ti —sint j+cost Kk (i)
dt dt
der -

dt—2:%[2tf—sint ]+cost k ]: 2i —cost ]—sint k

The force acting on the object is:
F = ma=m(2i —cost j—sint k) (i)

Using Eq. (3.30), the work done is:

1 d—-
w-[[e 4 a ®
dt
0
Using the results of Egs. (i) and (ii) in Eq.(iii):

1
W = mHZiA—cost]—sintIz]. [2tf—sint]+costl2] dt
0

1 1
The equation of a straight = mI[4t +sintcost —sintcost | dt = mj[4t] dt = m[2t2]i =2m
0 0

line between two points

(X1,y1) and (X,,y») in the xy ] o ] -

plane is: 9. Refer to Fig. 3.18. Let us calculate the line integral of the field A between

j ) the points A(0,0) and B(2,1), along two different paths: One is the straight
X—X

Yo ¥ . . . . . .
y-Y1 :(XZ —Xi ( line AB and the other is ACB. Let us first consider the path of integration

AB. The equation of the straight line ABis y = 5(read the margin remark).
For the line AB, we get 2

y :%x We use Eq. (3.19b) for the line integral along AB with
(X1 =0,y1 =0,X, =2,y, =1) F=A and F=2xy+1L Fp=x%-2y 0

94 We get the integral of A along AB as:
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10.

IR = jA.dT: j(2xy+1)dx+ j(xz—zy)dy (ii) y
AB AB AB 1 B
The limits on x and y are as follows: (2D
0<x<2 0<y<1 (iii)
N >
To evaluate the line integral over AB, we need to write each one of the A / c X
integrals in Eq. (ii) as an integral over one variable. So we write (read the (0,0) (2,0)

margin remark): Fig. 3.18: Paths of

2 1 integration for TQ 9.
lag = j(2xy+1)dx + _[(xz —2y)dy
0 0
2 1 Note that the integration
= j(xz +1dx + J.(4y2 —2y)dy (iv) is along the line AB given
0

by y =§and not along

3 2 3 1
X 4 4y _y2 _5 the x or y axes.
0 3 0 Therefore, when we
evaluate Eq. (ii), to
integrate over x, we must

Next we evaluate the integral along ACB, which is the sum of the line N _
write y in terms of x (i.e

integrals over AC and CB. g
y = E) in the integrand.

- lac = jA.dT: jA.dh IA.dT (v) |
ACB AC B §|mllarly, when we :
mtegrate overy, we write
Along AC, the value of y is a constant (y = 0) and therefore dy = 0. ’;'rltze;r;‘s ofy (ie.,
Y ¥ 1
jA.dl :J.(ny +1)dx = j(zx(O) +Ddx =[x]3 =2 (Vi)
AC 0 0
Along CB, the value of x is constant (x = 2), so dx = 0.
. 1
[AdT =[(x2-2y)dy = [(4-2y)dy [y -y2] =3 (vii)
CB 0 0
Substituting from Eg. (vi) and (vii) into Eq. (v), we get:
Iacg =2+3=5. (viii)
Since the value of the integral is same for two different paths AB and ACB, y
we can say that the line integral is path independent. 1 12)
AL, 2
The closed path of integration C is made up of the curves C,and C,
between the points O(0,0)and A (1,2) (see Fig. 3.14 reproduced here as (t,2t2)
Fig. 3.19).C; is described by the parabola y = 2x ? between the points O F(t)\
and A. C, is the straight line y = 2x from A to O, so the circulation of
F is: 0(0,0) / X
| = [Fdi = [Fdl+ [Fadl c,

Fig. 3.19: Figure for TQ 10.
We parameterize the parabola y = 2x%as : 95
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Here we have used the
parametric representation to
evaluate the integral along
AO. Alternatively we can
write, using Eq. (3.19b) and
y =2x:

Iy = I(yde + xydy)
Cz

y2
= I 4x2dx +7dy

Ca

0 oy2
:{4x2dx +‘2[?dy

96

F(t) =ti + 2t2]; x(t)=t ; y(t) = 2t* ; 0O<t<1

%:n 4t EoyZiexy] = a4+ 23] 0)

Therefore

Using Eq. (3.30) we then get:

- 1 1
I = j[ﬁ d—r}dtzj'[4t4f+ 2t3]][T+ at ]t = [[at4 + 8te]at
oL d 0 0
_ j:[12t4 }jt — [Eir- —E
I L5 |, 5

We next calculate 15 = J.IE.d#. The parametric representation for the
C

straight line C, is
F(t) =ti + 2tj; x(t)=t, y(t)=2t, 1<t <0
dr -

— =i+2j, F=y2i+ xyj = 4t2 + 2t2]

Then, ii
ot (i)

Using Eq. (3.30) we get:

2= | [ﬁ.i—ﬂdt:i[ﬂzh 2t2]][ + 25]at =

Ca
0
[8t2]dt :{g} =_8&j
3 | 3

Finally, adding I, and I, we get: I=1; + I, =

[4t2 + 4t2]at

e 1)

P — O

12
5

4

15

i o
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