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                    UNIT 3 

INTEGRATION OF 
VECTOR FUNCTIONS 

AND LINE INTEGRALS 
Structure 
 

3.1 Introduction 

 Expected Learning Outcomes 

3.2 Integration of a Vector Function 

Integrals involving Scalar and Vector  

Products of Vectors 

3.3   Line Integral of a Vector Field 

Representation of a Curve  

Parametric Representation  

Other Types of Line Integrals 

  

STUDY GUIDE           

 

 

 

In this unit, you will learn how to integrate vector functions of a scalar variable and 

solve line integrals. Line integrals are a generalization of ordinary integrals that you 

have studied in school. In order to learn these concepts better, you should revise 

integral calculus that you have studied in school. You must also revise the concepts of 

scalar and vector products, the basic concepts of vector functions of a scalar variable 

and how to differentiate them, all of which you have studied in Unit 2 of BPHCT-131. 

 

 

3.4 Conservative Vector Fields  

Scalar Potential 

Vector Potential 

3.5 Summary 

3.6 Terminal Questions 

3.7 Solutions and Answers 

 

“The miracle of the appropriateness of the language of 

mathematics for the formulation of the laws of physics is      

a wonderful gift ...”  

Eugene Paul 
Wigner  

 

 

How do we determine the work done by 

a variable force such as the force of 

gravitation? We need to solve line 

integrals. 
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3.1   INTRODUCTION 

In Unit 2 of BPHCT-131 and Units 1 and 2 of this course, you have studied 

vector functions, scalar and vector fields, and their properties. You have learnt 

how to differentiate vector functions and scalar and vector fields. You have 

studied the concepts of the gradient of a scalar field, and the divergence and 

curl of vector fields. These are differential operations on scalar and vector 

fields that find many applications in physics. In this unit, you will learn how to 

determine the integrals of vector functions, and scalar and vector fields. You 

will also learn how to evaluate line integrals of vector fields. 

There are several problems in physics where we need to calculate the 

integrals of vector functions and vector fields. For example, we may want to 

know what path a cricket ball will take after it leaves the bowler’s hands with a 

given acceleration. Finding the path of the cricket ball involves solving a 

differential equation and integrating vector functions. The actual integration is 

essentially the same as in ordinary calculus which you have studied as a part 

of your school curriculum. However, integrals of vector functions and fields are 

different in the way in which the integrand is handled, as well as in the 

physical meanings of the quantities obtained. This will become clear as you 

study this unit.   

In Sec. 3.2, you will learn how to integrate a vector function and apply it to 

solve some simple problems in physics. In this section you will also learn how 

to integrate the scalar and vector products of vector functions and some 

applications in physics.  

In this unit you will learn how to evaluate line integrals. The line integral is a 

generalization of an ordinary integral over a single variable. In a line integral 

the path of integration is not a straight line but an arbitrary curve in space. 

Line integrals are used extensively in physics. One of the most important 

applications of the line integral is to determine the work done by a variable 

force. Suppose an object moves along an arbitrary curve in space, (instead of 

a straight line) under the action of a force. How would you calculate the work 

done by the force in moving the object between any two points on this path? 

The work done is the integral of the scalar product of the force field and an 

infinitesimal displacement along the path of the object. This is an example of a 

line integral.  

In Sec. 3.3, you will learn how to evaluate line integrals in which the integrand 

is the scalar product of a vector field and a displacement along an arbitrary 

path in space. You will also study other types of line integrals of scalar and 

vector fields. In Sec. 3.4, you will study about conservative vector fields. You 

will see that line integrals can be used to define conservative force fields, an 

important concept in physics. 

The integrals of vector functions being taken up in this unit involve integration 

over a single variable. In physics we often need to evaluate integrals over 

arbitrary surfaces and volumes. These involve integrals over two and three 

variables. In Unit 4, you will study about surface and volume integrals of a 

vector field. A brief introduction to integration over two variables is given in 
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Appendix A2 of this block. You should read Appendix A2 after completing your 

study of this unit. 

 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 evaluate the integral of a vector function with respect to a scalar;  

 evaluate the integrals of scalar and vector products of scalar functions; 

and 

 evaluate line integrals of scalar and vector fields. 

3.2   INTEGRATION OF A VECTOR FUNCTION 

Let us begin our study by asking: How do we integrate a vector function 

with respect to a scalar?  

We lay down the basic rules for the integration of a vector function with 

respect to a scalar. Consider a vector a


 which is a function of a scalar t. Let  

 kjiaa ˆ)(ˆ)(ˆ)()( 321 tatatat 


 (3.1a) 

where )( and )(),( 321 tatata  are the x, y and z components of ),(ta


 

respectively. If 

 )(t
dt

d
b

a 

     (3.1b) 

then the (indefinite) integral of )(tb


 with respect to t is ,)( ca


t  where c


is an 

arbitrary constant vector. Symbolically, we write:  

 cab


 )()( tdtt    (3.2) 

In physics, we deal with quantities that generally have dimensions. Therefore,  

c


 is a vector whose dimension is the same as that of .a


 In a physical 

problem, c


 can be determined by using given initial conditions.  

In order to evaluate the integral of a vector function such as the one in                

Eq. (3.2), we express the vector b


 in its component form:  

 kjib ˆ)(ˆ)(ˆ)()( 321 tbtbtbt 


 (3.3) 

where )(and)(),( 321 tbtbtb  are the x, y and z components of )(tb


, 

respectively. We can now write the integral of the vector function )(tb


 as: 

    dttbdttbdttbdtt )(ˆ)(ˆ)(ˆ)( 321 kjib


 (3.4)   

Note that since )(t
dt

d
b

a 

 , we also have: 

 )(
)(

and)(
)(

),(
)(

3
3

2
2

1
1 tb

dt

tda
tb

dt

tda
tb

dt

tda
  (3.5) 

You have studied 

integration in school 

and you know that 

integration is the 

reverse process of 

differentiation. This is 

also true for the 

integration of vector 

functions relative to a 

scalar.  
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1. For a vector function in three dimensions defined as 

kjib ˆ)(ˆ)(ˆ)()( 321 tbtbtbt 


  where )()(),( 321 tbandtbtb   are 

continuous over the interval  21, tt , the indefinite integral of )(tb


with 

respect to t is given by: 

   dttbdttbdttbdtt )(ˆ)(ˆ)(ˆ)( 321 kjib


      (3.4) 

The definite integral of )(tb


over the interval  21, tt  is: 

                           

2

1

2

1

2

1

2

1

)(ˆ)(ˆ)(ˆ)( 321

t

t

t

t

t

t

t

t

dttbdttbdttbdtt kjib


  (3.7) 

2.  For a vector function in two dimensions, jib ˆ)(ˆ)()( 21 tbtbt 


 where 

)(and)( 21 tbtb  are continuous over the interval  21, tt , the indefinite 

integral of )(tb


 with respect to t is given by 

   dttbdttbdtt )(ˆ)(ˆ)( 21 jib


                     (3.8) 

The definite integral of )(tb


with respect to t over the interval  21, tt  

is  

  

2

1

2

1

)(ˆ)(ˆ)( 21

t

t

t

t

dttbdttbdtt jib


                          (3.9) 

 

 

 

INTEGRAL OF A VECTOR FUNCTION 
 

From our knowledge of calculus, using Eq. (3.2), we can also write,  

      333222111 )()(and,)()(,)()( ctadttbctadttbctadttb (3.6) 

where 21, cc  and 3c  are the constants of integration. 

So to evaluate  ,)( dttb


 we only need to integrate the scalar functions 

)(),( 21 tbtb  and )(3 tb  with respect to the scalar t, as in ordinary calculus. Note 

that, we leave the unit vectors kji ˆandˆ,̂  outside the integrals as these are 

constant and do not depend on t. In the same way, we can write the 

expression for the definite integral of a vector function in the interval  21, tt  

as follows: 

    

2

1

2

1

2

1

2

1

)(ˆ)(ˆ)(ˆ)( 321

t

t

t

t

t

t

t

t

dttbdttbdttbdtt kjib


 (3.7) 

The integration of the two-dimensional vector function with respect to scalar is 

also carried out in the same way. So, let us now write down the formal 

definitions of the integral of a vector function )(tb


 in two and three-

dimensions:  
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1.  For a vector function )(tf


 and a constant :  

    dttdtt )()( ff


       (3.10) 

2.  For any two vector functions )(and)( tt gf


and constants  and : 

     dttdttdttt )()()]()([ gfgf


      (3.11) 

3.  For a vector function )(tf


and a constant vector a


:  

    dttdtt )(.)(. fafa


        (3.12) 

4.  For a vector function )(tf


and a constant vector a


:  

  dttdtt )()( fafa


         (3.13) 

 

 

 

 

 

 

 

 

PROPERTIES OF INTEGRALS OF VECTOR 
FUNCTIONS 

 

We now write down a few properties of the integrals of vector functions.  

  

 

 

 

  

 

 

 

 

 

 

 

 

Let us now work out a simple example on integration of vector functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Determine the position vector of a particle )(tr


 given that its velocity 

function is: 

kjiv ˆˆcosˆsin)( 2tttt 


         

and the initial position of the particle (position vector of the particle at )0t  

is kjir ˆˆˆ)0( t


   

SOLUTION   Using the definition of velocity, we can write the position 

vector of the particle as the integral of its velocity as follows:  

 dttt
dt

td
t )()(

)(
)( vr

r
v





       (3.14) 

We write the integral in terms of the components of the vector function 

)(tv


, as defined in Eq. (3.4):  

dttdttdttt   2ˆcosˆsinˆ)( kjir


         

       Ckji


 ˆ
3

ˆsinˆcos
3t

tt        (i) 

where C


 is an arbitrary constant vector.  

To determine C


 we use the given initial condition. Substituting 0t  in   

Eq. (i) we get   

kjiCir ˆˆˆˆ)0( 


t      (ii) 

 

 

 

 

XAMPLE 3.1:  POSITION VECTOR 
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From this we get: kjiC ˆˆˆ2 


     (iii) 

Substituting for C


  in Eq. (i), we can now write the position vector as a 

function of time as:  

kjikjir ˆˆˆ2ˆ
3

ˆsinˆcos)(
3


t

ttt


 

      kji ˆ)
3

1(ˆ)sin1(ˆ)cos2(
3t

tt           (iv)    

 

 

 

 

 

 

Before we go further, let us summarize what you have studied so far:  

 

 

 

 

 

You may now like to work out an SAQ on what you have studied so far.  

SAQ 1  -  Integrating a vector function 

a) Evaluate dt
t

t

t
 





























ji ˆ

1

2ˆ

1

4
22

  

b) The acceleration of an object is .ˆ10ka 


  Obtain its position as a 

function of time t if its initial velocity is kiv ˆˆ)0( t


  and its initial 

position is kr ˆ2)0( t


. 

In Unit 2 of BPHCT-131, you have learnt that many physical quantities can be 

expressed as the scalar or vector products of vectors. We now study the 

integrals of scalar and vector products of vector functions. 

3.2.1    Integrals involving Scalar and Vector Products of 
Vectors  

Let )(ta


 and )(tb


 be two vector functions of a scalar t. Then for evaluating the 

integrals             , and. 21 dtttIdtttI baba


we first compute the 

scalar and vector products in the integrands. Recall from Sec. 1.4 of Unit 1, 

BPHCT-131 that 1l  will reduce to an integral of a scalar function of t with 

respect to t. Similarly, 2l  will be the integral of a vector function of t with 

respect to t. Let us take an example to discuss the evaluation of 1l . After that 

you can work out another example. 

A table of standard 

integrals is given at the 

end of this block.  

 

 

 The integral of a vector function is defined as the integral of each  

scalar component of the function.  

 This definition holds for both definite and indefinite integrals of vector 

functions. 

 

 

 

 

 

 

 

 

 

 

INTEGRATION OF A VECTOR FUNCTION 
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 cT
T

c







 22
 

 xct
c




2
cos2

 

,
2

cos2







 


 kx
T

t
 

where 





2
k  























 


 1
2

2cos
2

1
kx

T

t
 

   



T

dtxct

0

2 2
cos  

 






 




T

dtkx
T

t

0

2
4

cos
2

1
 



T

dt

0
2

1
 

T

kx
T

tT

0

2
4

sin
42

1







 



  

2

T
  

  kx
T

24sin
8




  

 
2

2sin
T

kx   

 
2

2sin2sin
8

T
kxkx

T





 

2

T
  

 
 

 

 

  

In free space a transverse electromagnetic (EM) wave propagating in the  

x-direction has an electric field   jE ˆ2
cos0 xctE 







 and a magnetic field 

  .ˆ
2

cos0 kB xctB 






Here c and  are, respectively, the velocity and the 

wavelength of the EM wave and .00 cBE   The energy flowing through a 

volume V per unit time is given by 

 ),..(
2

HBDE



V

U
 

where ED


0  and .0 HB


   

Here 0 and 0 are permittivity and the magnetic permeability, respectively, 

of free space and .1

00
c Compute the total energy flowing through V 

in one complete cycle of EM wave if its time period is T. 

SOLUTION    The energy flow during time dt is given by U dt. So the total 

energy will be the definite integral of U from 0t  to ,Tt  i.e. 

      BE

TT

II
V

dt
V

dtUU   2
..

2
00

0 HBDE   (i) 

where  

T

B

T

E dtIdtI

00

 .. and. HBDE


 

Both IE and IB are integrals of the type I1. So we shall first evaluate the 

scalar products. Given that 

   jE ˆ2
cos0 xctE 







         (ii) 

   jED ˆ)(
2

cos000 xctE 







 (iii)
 

We get  )(
2

cos. 22
00 xctE 




DE



 (iv)
 

Similarly, you can show that 

 xct
B









2
cos. 2

0

2
0HB


        (v)  

Substituting from Eq. (iv) and Eq. (v) into Eq. (i) we get 

I
B

E
V

U

















0

2
02

000
2

        (vi) 

where (see margin remark)  
2

2cos

0

2 TdtxctI

T





   

 

 

    XAMPLE  3.2: INTEGRAL OF A SCALAR PRODUCT  
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 

















0

2
02

000
4

B
E

VT
U         (vii) 

Again 

















00

2

000
2

2

02

0

1
cE

c

E
B   

 2

00
0

2

0 E
B




  

        (viii) 

Hence 
2

000
2

E
VT

U   

 

 

 

  

 

 

 

 

The method will be the same for integrating vector products expressed in their 

component form.  

You may like to solve an SAQ before studying further. 

SAQ 2  -  Integrals of scalar and vector products 

Given two vector functions kjia ˆˆ)1(ˆ)( 2tttt 


 and ,̂ˆ3)( 2 jib ttt 


 

evaluate the integrals:   

a)  
1

0

)(.)( dttt ba


        and        b)   

1

0

)()( dttt ba


 

We now discuss line integrals of scalar and vector fields. 

3.3   LINE INTEGRAL OF A VECTOR FIELD 

In Unit 2 of BPHCT-131, you have studied that for a constant force, when the 

displacement is not along the force (Fig. 3.1), the work done is the scalar 

product of force and displacement: 

 dF


.W  = dF )cos(   (3.15) 

In your school physics, you have learnt about work done by a constant force 

and variable force. You may recall that when a variable force F(x) is applied 

on an object along the x-axis, the work done in moving the object between any 

two points 1x  and 2x  is an integral given by  

  
2

1

)(

x

x

dxxFW   (3.16) 

A well-known example of this is the work done in stretching a spring by a 

length d. The spring force is a restoring force: F(x) =  kx, where k is the 

spring constant. The work done is: 

   

d

dxkxW

0

)(  (3.17) 

Let us now consider the most general case: a variable force applied on an 

object moving along an arbitrary path in space. What is the work done by the 

Fig. 3.1: Work done by a 

force when the force and 

displacement are not 

along the same 

direction. 

F


 

d


 

d.F


W  
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force? Refer to Fig. 3.2. A planet is moving around the Sun in an elliptical  

orbit under the gravitational force. How will you calculate the work done for 

such systems?  

Consider an object moving along an arbitrary path in space between the 

points P and Q. Note that the path is a curve and the force ),,( zyxFF


  is a 

variable force (Fig. 3.3a). Let us calculate the work done by the force in 

moving the object from P to Q along the path shown in Fig. 3.3a. We first 

divide the path PQ in n tiny segments as shown in Fig. 3.3b. We define the 

displacement of the object for each of these segments 

as ,,...,,.., 21 ni llll


 respectively. Let il


 be the displacement for the ith 

segment. The magnitude of the displacement for each segment of the curve  

is almost equal to its length (read the margin remark) (inset of Fig. 3.3b).  

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 3.3: a) An object moves under a variable force along the path PQ. The force 

is different at different points along the path; b) the path is divided into 

n segments and the displacement is defined for each segment. 

Although the force is actually different at different points of the path, we 

assume that it is constant over each of these segments. 

Let the force acting on the object be 1F


for the first segment, 2F


for the second 

segment, and so on. Let us consider the ith segment. What is the work done 

by the force iF


 for the displacement il ? From Eq. (3.15), it is .Δ. iiiW lF


  

The total work done in moving the object over the entire path is the sum of the 

work done in moving the object over each segment of the path. We can write it 

as: 

  nniiW lFlFlFlF  .......... 2211






n

i

ii

1

. lF


 (3.18a) 

In the limit as n , we express the sum in Eq. (3.18a) as an integral along 

the path between P and Q: 

  
C

dW lF.


 (3.18b) 

This is an example of a line integral along a path of integration C. It is the 

path between the points P and Q along which the object moves. It should be a 

If the number of 

segments n is large, 

we can approximate 

the length of the 

curve by summing 

over the magnitude of 

the displacements.  

The displacement for 

each segment of the 

path has its tail at the 

starting point of the 

segment and its head 

at the final point of 

the segment as you 

can see in the inset of 

Fig. 3.3b.  

 

z  
 

P 

Q ),,( 222 zyxF


 

),,( 111 zyxF


 

),,( 333 zyxF


 

x  
 

y  

 

P 

Q 

3l


  

1l


  

2l


  

nl


  

il


  

 (a)  (b) 

Fig. 3.2: A planet moves 

around the Sun in an 

elliptical orbit. The force  

of gravitation on the  

planet is a variable force.  
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smooth curve. We will explain what is meant by a smooth curve in the next 

section.   

Here we have defined the line integral in order to calculate the work done by 

a force field in moving an object along an arbitrary path. We can define such a 

line integral for any arbitrary vector field A


 along a path of integration C as 


C

dlA.


. 

The line integral is a generalization of the concept of a definite integral. In a 

definite integral 
b

a

dxxf )( , we integrate a function f(x) along the x- axis 

between two points, a and b. The function is defined at every point in the 

interval [a, b]. In a line integral, we integrate along a curve C and the integrand 

( lF d.


in Eq. 3.18b) is a function defined at every point on the curve. Note that 

the path of integration can be any straight line or curve, in space or in a plane. 

We now discuss how to calculate this integral. Let us write the force field F


in 

terms of its component functions as kjiF ˆˆˆ
321 (x,y,z)F(x,y,z)F(x,y,z)F 


,  

and the displacement along the path as kjil ˆˆˆ dzdydxd 


. The line integral 

of Eq. (3.18b) is then given by: 

   

CC

dzFdyFdxFdW 321. lF


 (3.19a) 

If the force field is two-dimensional and the object is moving in the xy plane, 

we can write the line integral as: 

   

CC

dyFdxFdW 21. lF


 (3.19b) 

Note that in general, F1, F2 and F3 are functions of x, y and z. However, the 

integrals are over either x or y or z. Therefore, you must express each 

integral in terms of a single variable. This means, for example, to evaluate 

the integral ,),,(1
C

dxzyxF  we must express y and z in terms of x, so that F1 is 

a function of only x. 

This is what you will learn about in the next section. 

3.3.1    Representation of a Curve  

In a plane, a curve can be described by an equation of the form:        

 )(xfy   (3.20a) 

For example, 24xy   is the equation of a parabola and 222 ayx   is the 

equation of a circle of radius a with its origin at the centre. The coordinates of 

a point on the curve described by Eq. (3.20a) are given by (x, f(x)). 

In three-dimensional space, we may describe a curve using a set of equations 

To write the equation of 

the circle in the form of 

Eq. (3.20a), we write it 

as: 
22 xay   
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  )();( xgzxfy                                                 (3.20b) 

The coordinates of each point on the curve are ))(),(,( xgxfx . This is also 

called an explicit representation. We may also describe the curve as an 

intersection of two surfaces: 

 0),,(;0),,(  zyxGzyxF  (3.20c) 

This is called an implicit representation. Note that both 0),,( zyxF and 

0),,( zyxG  represent surfaces in space. 

In the following example, we use the definition of line integral in Eqs. (3.19b) 

and the representation of a curve in a plane given by Eq. (3.20a) to calculate 

the work done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAQ 3  -  Work done by a force 

Calculate the line integral of the force field  jiF ˆ1ˆ 2  xxy


 from (0,0) to (1,1) 

along  the three paths labeled I,II and III in Fig. 3.4. 

Note that each of the 

integrals in Eq. (ii) is 

over a single variable. 
 

Note that in all the 

representations of a 

curve, there is only 

one independent 

variable. This is 

important, because 

the line integral, 

unlike a double 

integral or a triple 

integral, is an 

integration over one 

variable. 
 
 

 

 
 

 

Calculate the work done by a force field jiF ˆˆ2 2yxy 


 in moving an object 

along the curve
2xy  in the xy plane from (0,0) to (2,4). 

SOLUTION   Using Eq. (3.19b) for the work done by a 2-dimensional 

force field in moving an object in the xy plane with xyF 21   and 2
2 yF   

we can write: 

  

C

dyyxydxW 22     (i) 

The equation of the curve 
2xy  tells us how x and y are related along the 

path C. Using this in Eq. (i) we get: 

  

C

dyydxxxW 22 )(2     (ii) 

Since the coordinates of the initial and final points of the path are (0,0) and 
(2,4) we can write the limits on x and y along the path as: 

40;20  yx                                        (iii) 

And the integral of Eq. (ii) reduces to: 

dyydxxW  

4

0

2
2

0

32  

These can be evaluated as ordinary integrals:  

 
3

40

34

2
4

0

3
2

0

4
































yx
W    (iv) 

 

XAMPLE 3.3:  LINE INTEGRAL OF A VECTOR FIELD IN A 

PLANE 

 

 

 

Fig. 3.4 
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y 
 

III 
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)0,0(O  

 

)0,1(A  

 

)1,1(B  

 

)1,0(D  
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In the next section we discuss another representation of a curve in space 

which is useful for evaluating line integrals. 

3.3.2    Parametric Representation  

There is yet another representation of the space curve called the parametric 

representation. In a Cartesian coordinate system, we may represent a curve 

using the position vector function  tr


 and a real parameter t, as follows: 

 kjir ˆ)(ˆ)(ˆ)()( tztytxt 


 (3.21a) 

)(tr


is the position vector of a point on the curve, as you can see in Fig. 3.5. 

As the value of t changes, the head of the vector traces out a curve in space. 

A point on the curve has the coordinates [x(t), y(t), z(t)]. The coordinates are 

functions of the parameter t and for each value of t, we get a different point on 

the curve.  

Let us now learn how to evaluate line integrals using the parametric 

representation of the path of integration. Sometimes, it is convenient to use 

the parametric representation rather than Eqs. (3.19a or 3.19b) as you will see 

in Example 3.4. 

Let us first write down the path of integration in the parametric representation. 

The parametric representation of the path of integration C between two points 

P and Q (Fig. 3.6a) is, 

 21,ˆ)(ˆ)(ˆ)()( ttttztytxt  kjir


 (3.21b) 

 where 1t  and 2t  are the values of the parameter t at P and Q, respectively. 

The coordinates of P and Q are P [x(t1), y(t1), z(t1)]  and Q [x(t2), y(t2), z(t2)]. 

Remember that we have said earlier in this section that the path of integration 

in a line integral should be a smooth curve. You may now like to know: When 

can we say that C is a smooth curve? C is said to be a smooth curve if  

 )(tr


 as defined in Eq. (3.21b) has a continuous derivative 
dt

td
t

)(
)(

r
r




  

which is not equal to zero anywhere on C )( 21 ttt  , and  

 )(tr

  is directed along the tangent to the curve at every point (Fig. 3.6a).  

The unit tangent vector at each point on the curve is: 

  
)(

)(ˆ
t

t

r

r
t 






  (3.22) 

Since we are integrating from P to Q, the path of integration also has a 

specific direction (is oriented). We take the direction from P to Q as the 

positive direction along the curve (Fig. 3.6a). We mark the positive direction 

on the curve by an arrow. If the path is such that the initial and final points of 

the curve coincide, as in Fig. 3.6b,     21 tt rr


 , then the curve is a closed 

curve or closed contour. When the integration is over a closed path C, the 

symbol of integration 
C

is replaced by 
C

.  

Before you learn how to evaluate the line integral using the parametric 

representation, we illustrate the parametric representation of a few simple 

curves. 

(b) 

x 
 

P t̂  

Q )( 1tr


 

)( 2tr


 

(a) 

C 

y 
 

Fig. 3.6: a) Parametric 

representation of the 

path of integration;                   

and b) a closed path. 

 y 
 

 

))(),(),(( 000 tztytx  

 x 
 

 

 z 
 

 P 

)(tr


 

Fig. 3.5: Parametric 

representation of a 

curve. At the point P,   

the value of the 

parameter is ,0t  the 

position vector is 

 0tr


and the 

coordinates are 

)).(),(),(( 000 tztytx   
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Write down the parametric representation for the following: 

a) A straight line between the points (0,0) and (1,2). 

b) The ellipse 1
2

2

2

2


b

y

a

x
  

c) The circle 222 ayx   

d) A circular helix    

SOLUTION   In all four parts, we will express the equations of the 

curves in terms of a single parameter, say t. 

a) From school mathematics, you know that the equation of the straight 

line between any two points ),( 11 yx and ),( 22 yx  is: 

    )( 1
12

12
1 xx

xx

yy
yy 














  

 or  
12

1

12

1

xx

xx

yy

yy









     (i) 

 The LHS of Eq. (i) is a function of only y and the RHS is a function of 

only x. We can, therefore, equate this to a parameter t. Then 

    t
xx

xx

yy

yy











12

1

12

1  

 or  txxxtxtyyyty )()(and)()( 121121   (ii) 

 Eqs. (i) and (ii) are the parametric equations for x and y. Thus in 

general  

    jir ˆ])([ˆ])([)( 121121 tyyytxxxt 


  (3.23) 

 Using )0,0(),( 11 yx  and )2,1(),( 22 yx  in Eq. (ii), we get 

    ttyttx 2)(;)(       (iii) 

 To get the end points of the straight line in terms of t, we use Eq. (iii) 

as follows:  

 Let t = t1 for the point (0, 0) and t = t2 for the point (1, 2). Then since 

x(t) = t  and  y(t) = 2t, we get 

   002)(,0)( 1111111  tttyyttxx  

 and 122)(,1)( 2222222  tttyyttxx  

 Therefore, in terms of the parameter t, the initial point of the straight 

line is 01 t  and the final point is .12 t  The parametric 

representation of the straight line between (0,0) and (1,2) is: 

    10;̂2ˆ)(  tttt jir


  

b) Note that for ,1
2

2

2

2


b

y

a

x
 the values of both 

b

y

a

x
 and  should lie 

between 1 and 1. This suggests (see margin remark) that we can use 

the identity 1sincos 22  tt  to write the parametric representation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values of sin t 

and cos t lie between 

1 and 1. 

XAMPLE 3.4:  PARAMETRIC REPRESENTATION OF 

CURVES 
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    t
b

y
t

a

x
sin;cos   

   tbytatx sinandcos)(   

 So, an ellipse with its centre at the origin and semi-major and semi-

minor axes a and b respectively, has the parametric representation           

(Fig. 3.7a): 

     20ˆsinˆcos)( ttbtat jir


  (3.24) 

 The parameter t is the angle the position vector )t(r


makes with the    

x-axis. As t changes from 0 to 2, the tip of the position vector traces 

the entire ellipse starting from the point A on the x-axis. The coordinate 

of each point on the ellipse is (a cost, b sint). 

 Note that if you want to take only a part of the ellipse, you have to 

choose the range of t accordingly. For example, for the part of ellipse 

in the first quadrant we write; 

    2/0ˆsinˆcos)(  ttbtat jir


 

c) Substituting a = b in Eq. 3.24, we get the parametric equation of a 

circle x2 + y2 = a2 (Fig. 3.7b): 

    20ˆsinˆcos)( ttatat jir


 (3.25) 

 The coordinate of each point on the circle is (a cos t, a sin t). 

d) The parametric equation for a circular helix (Fig. 3.7c) is: 

   πt, bbttatat 200 ;ˆˆsinˆcos)(  kjir


 (3.26) 

          

 

x  
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
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             (a)         (b) 
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(t)r

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z  

 

t  

 
 

                                           (c) 

Fig. 3.7: Parametric representation of the a) ellipse; b) circle; c) right circular 

helix, in which the curve lies on the cylinder x
2 
+ y

2 
= a

2
. 
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The parametric representation of a curve has several applications. In 

Mechanics the parameter t in Eq. (3.21b) may be used to represent time and 

we can use the vector function )(tr


to determine the velocity and acceleration 

of an object moving along a curve. We now use the parametric representation 

of the path of integration to define the line integral of a vector function along 

the path as: 

 







2

1

)(
.)]([.

t

tC

dt
dt

td
tdW

r
rFlF




 (3.27) 

))(( trF


 is a vector function , )(tr


 is defined in Eq. (3.21b), t1 and t2 are the end 

points of the path. 

This is now the definite integral of a scalar function. We can write 

  kji
r ˆ)(ˆ)(ˆ)( tztytx

dt

d

dt

d




 

       kji ˆ)(ˆ)(ˆ)(

dt

tdz

dt

tdy

dt

tdx
  (3.28) 

Using kjirF ˆ)(ˆ)(ˆ)())(( 321 tFtFtFt 


 (see margin remark) and Eq. (3.27) we 

get: 

         














2

1

2

1

)(
)(

)(
)(

)(
)(. 321

t

t

t

t

dt
dt

tdz
tF

dt

tdy
tF

dt

tdx
tFdt

dt

dr
F


 (3.29a) 

For a two-dimensional force field jiF ˆ)(ˆ)( 21 tFtF 


, we can write the line 

integral as: 

         














2

1

2

1

)(
)(

)(
)(. 21

t

t

t

t

dt
dt

tdy
tF

dt

tdx
tFdt

dt

dr
F


 (3.29b) 

Note that the quantity in the bracket in Eq. (3.29b) is a scalar function of a 

single variable t. We can say that the integral is along the t-axis, in the 

direction of increasing t. It exists when C is a smooth curve or even a 

piecewise smooth curve. In Fig. 3.8 you can see an example of a curve which 

is piecewise smooth.  

Let us now write down a formal definition of the line integral of a vector field 

using the parametric representation of the path of integration. 

By replacing x,y,z in 

the vector function 

jiF ˆˆ
21 (x,y,z)F(x,y,z)F 


  

      k̂3 (x,y,z)F  

by the parametric 

functions );(txx                

),();( tzztyy   we 

can write the vector 

function as a function 

of the parameter t. 

-  Parametric representation of a parabola 

 

 

 

 

Write down the parametric representation for the parabola 2xy   between 

the points (0,0) and (2,4). 

 

 

 

 

SAQ 4 

 

 

 

 

Fig. 3.8: The curve 

between A and B is 

piecewise smooth. It is 

made up of the smooth 

curves 21,CC and .3C  

1C  

 

2C  

 

3C  

 

A 
 

 

B 
 

Usually in Physics we 

use the symbol F


to 

denote force fields and 

r


d  to indicate 

displacement. Here we 

use the l


d instead 

merely to highlight that 

we are talking about an 

infinitesimal 

displacement  

along a curve. 
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Calculate the line integral of the vector field jiF ˆˆ),( xyyx 


over the 

curve   jir ˆsinˆcos ttt 


with  t0 . 

SOLUTION   We use Eq. (3.30) to calculate the line integral. Let us 

write down the steps of this calculation.  

Step 1: Calculate .
dt

dr


    

jiji
r ˆcosˆsin]ˆsinˆ[cos tttt

dt

d

dt

d




              (i) 

Step 2: Write )]([ trF


 in terms of the parameter t. 

F


 is the vector field jiF ˆˆ),( xyyx 


. We write F


 in terms of the 

parameter t by replacing x and y in ),( yxF


by 

  .sin)(,cos ttyyttxx   

  jiF ˆcosˆsin tt 


                 (ii) 

Step 3: Determine ..
dt

dr
F


   

Using Eqs. (i) and (ii),  we can write : 

         
    1cossinˆcosˆsin.ˆcosˆsin. 22  tttttt

dt

d
jiji

r
F



     
(iii)          

Step 4: Evaluate ..
2

1

 







t

t

dt
dt

dr
F


    

The limits of integration are the limits of the parameter t for the path of 

integration. These are given as 01 t and .2 t  So using Eq. (iii), we get: 












0

2

1

. dtdt
dt

d
t

t

r
F


   

 

 

   

 

 

 

   

Remember that there can be more than one way of parametrizing a 
curve.  

For example, a circle 222 ayx   can be represented either as  

    jir ˆsinˆcos tatat 


   or     jir ˆcosˆsin tatat 


  

The value of the line integral does not depend on the chosen parametric 

representation of the path of integration.  

In the following example, we calculate the line integral for a two-dimensional 

vector field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LINE INTEGRAL OF A VECTOR FIELD 
 
If a vector field F


is continuous on a curve C which has a parametric 

representation  )(tr


 with 21 ttt   and )(tr


 is differentiable, we define the 

line integral of the vector field F


 along the curve C as: 

  







CC

dt
dt

td
tdW

)(
)].([.

r
FlF


           (3.30) 

 

 

XAMPLE 3.5:  LINE INTEGRAL OF A VECTOR FIELD 
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Determine the work done by the force field kjiF ˆˆˆ),,( zxyzxyzyx 


 in 

moving an object along the curve kjir ˆˆˆ)( 32 tttt 


 from (0,0,0) to (2,4,8). 

SOLUTION   We use Eq. (3.29a) to calculate the work done by the force 

field. Comparing the expression for )(tr


with Eq. (3.21b), we can write: 

 32 )(,)(,)( ttzttyttx   (i) 

Note that we have to determine the limits 21  and tt  of t for the path of 

integration as these are not given in the problem. The coordinates of the 

starting and ending points of the path are (0,0,0) and (2,4,8). Putting these 

values in the parametric expressions for the coordinates in Eq. (i) we can 

determine 21  and tt  as follows: 

  00)(,0)(,0)( 1
3

11
2

1111  tttzttyttx  (ii) 

and 

  28)(,4)(,2)( 2
3

22
2

2222  tttzttyttx  (iii) 

To calculate the work done we now have to evaluate the line integral  

 dt
dt

d
W

r
F


.

2

0

  (iv) 

following the steps outlined in Example 3.5. Here 

  kjikji
r ˆ3ˆ2ˆ]ˆˆˆ[ 232 ttttt

dt

d

dt

d




 (v) 

We next write F


terms of the parameter t by substituting x, y, z from Eq. (i) 

to get:  

 kjirF ˆˆˆ])([ 453 tttt 


          (vi) 

Using Eqs. (v) and (vi), we calculate: 

   632453 5)ˆ3ˆ2ˆ(.)ˆˆˆ(.)( ttttttt
dt

d
t  kjikji

r
rF




  (vii) 

The work done is:  

 

 
2

0

742

0

63

7
5

4
5














 

tt
dtttW     

       

units 
7

668
    

 

 

 

 

Let us now work out another example of a line integral of a vector field. We 

calculate the work done by a three-dimensional force field in moving an object 

along a given path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XAMPLE 3.6:  WORK DONE BY A FORCE FIELD 
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The line integral of a vector field F


along a curve C has the following 

general properties: 

1.  For a constant , 

  

C C

dd lFlF


..       (3.31) 

2.     

CC C

ddd lGlFlGF


...      (3.32) 

 where G


is another vector field which is continuous over the curve C. 

3. If the curve C is made up of two curves C1 and C2 as shown in          
Fig. 3.9, we have: 

      

21

...

CCC

ddd lFlFlF


 (3.33)  

Note that the orientation of the curve is the same in all the three 

integrals. If the orientation of the path is reversed in any line 

integral, as in Fig. 3.10, the integral gets multiplied by a negative 

sign. 
 

 

 

 

 

 

 

 

PROPERTIES OF LINE INTEGRALS 
 

It is convenient to use the parametric representation when the path of 

integration is a circle, an ellipse, a helix or a parabola. However, it is not 

always necessary to use a parametric representation to evaluate a line 

integral. In Example 3.4 the integral was evaluated using Eq. (3.19b). In some 

questions, as in SAQ 3, the path of integration may be along the x, y or z-axes 

or a combination of all these. In that case, using Eq. (3.19a or b) to evaluate 

the line integral will be more convenient than using Eq. (3.30).   

In evaluating line integrals we can use any of the equations: 3.19a, 3.19b, 

3.29a, 3.29b or 3.30. 

SAQ 5  -  Line integral of a vector field 

Calculate the line integral of the vector field 3/ rrF


  along the curve 

kjir ˆˆˆ)( tttt 


, with 31  t . 

Before you study further, you should learn some properties of line integrals. 

   

 

 

 

  

 

  

   

 

 

 

  

 

So far we have discussed line integrals of the form 
C

dlA.


. There are other 

types of line integrals. Here we only state these forms. 

3.3.3    Other Types of Line Integrals  

There are mainly two other types of line integrals that you may need to use.  
These are: 

i) 
C

dlf  

Fig. 3.9: The curve C 

between points A and 

C is made up of the 

curves C1 between A 

and O and C2 between 

O and C. 

A 

 

1C  

 

2C  

 

B 

 

 

C 
 

Fig. 3.10: The line 

integral over the path 

C2 will be the negative 

of the line integral           

over the path C3 



32

..
C

d
C

d lFlF


 

3C  2C
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and 

ii)  

C

d lA


 

where f and A


 represent a scalar and vector field, respectively. While (i) gives 

a scalar, (ii) gives a vector. 

In the next section we discuss conservative vector fields, which are an 

important concept in physics. In your mechanics course BPHCT-131 you have 

studied about central conservative forces which are an example of a 

conservative vector field.  

3.4 CONSERVATIVE VECTOR FIELDS 

From the examples you have worked out so far, you have seen that the 

equation of the path of integration (either in a parametric form or in terms of 

the Cartesian coordinates) is used to evaluate the line integral. In general, 

then, the value of the line integral depends on the path (as in SAQ 3). 

However you will find that in some cases the value of the line integral of a 

vector field between any two points does not depend on the path of 

integration between these points. This notion of path independence of the 

line integral of a vector field is used to define a conservative vector field: 

A vector field F


, for which the line integral   lF


d.  between any two 

points P and Q, has the same value for all paths that begin at the point P 

and end at the point Q is called a conservative vector field. 

In other words, the line integral of a conservative force is path 
independent (Fig. 3.11).  

The force of gravity is an example of a conservative force field. You know that 

the work done in lifting an object of mass m to a height is the same. 

Irrespective of the path taken, the work done is ( mgh). Thus, the force of 

gravity is a conservative force. The electrostatic force field is also 

conservative, as you have also studied in Unit 10 of BPHCT-131.  

There are three different ways of saying that a vector field F


 is conservative. 

And all of these are equivalent to saying that the line integral of the 

vector field is path independent. These are as follows: 

1.  The vector field can be written as the gradient of a scalar field  : 

   


F  (3.34) 

2. The curl of the vector field is zero or the vector field is irrotational: 

 0F


  (3.35) 

3. The line integral of the vector field along a closed path is zero: 

   

C

d 0. lF


 (3.36) 

The line integral of a vector field over a closed path is also called a closed 

contour integral or a loop integral. It is denoted by a small circle 

superimposed on the sign of the integral as shown below: 

 
C

d lF


.  (3.37) 

If the line integral of 

F


depends on the 

path between the two 

points, then it is 

called a non-

conservative vector 

field. 

 

Fig. 3.11: Three different 

paths of integration 

between two points P 

and Q, C1, C2 and C3. If 

the line integral of a 

vector field F


has the 

same value for all these 

paths then F


 is a 

conservative vector 

field. 

1C  

 

   P 
 

Q  

 
2C  

 

3C  
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For any vector field F


 the closed contour integral along a curve C is also 

called the circulation of the vector F


 around the path C.  

SAQ 6  -  Circulation of a vector field 

Calculate the circulation of a vector field jiA ˆ)3(ˆ 2 yxxy 


 around the circle 

422  yx . 

 

Let us now introduce another concept which is used very often in physics, that 

of the scalar potential associated with a conservative force. 

3.4.1    Scalar Potential  

In mechanics we define the potential energy as the negative of the work done 

in a process. For example, if we lift a mass m to a height z the work done by 
the force of gravity is mgzW  . However, the potential energy of the 

mass increases, and if the potential energy on the surface of the Earth is 

taken to be zero, the increase in the potential energy V = mgz. In other words, 

the potential energy is the negative of the work done. So, 

 

C

dWV lF


.  (3.38) 

For every conservative force F


, we, therefore, define a function V which is the 

scalar potential function V  such that V


F . 

Let us now work out an example in which we determine the scalar potential for 

a vector field by evaluating the line integral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Note that we can add a 
constant V0 to the scalar 
potential V, to find 
another potential 
function, V + V0. This is 
because for any constant 

V0,  V0 = 0 and 

therefore we can write 

F


(V +V0). So the 

scalar potential is 
arbitrary up to an additive 
constant. 
 

 

 

Determine the scalar potential for an electric field due to a point charge q 

placed at the origin. 

SOLUTION   The electric field due to a charge q placed at the origin of 

the coordinate system at a point P (x, y, z) which is at a distance r from the 

origin is the force on the unit charge placed at that point and is given by: 

2/322232 )(

)ˆˆˆ(
ˆ

zyx

zyxq

r

q

r

q






kjir
rE



 

We can check that the electric field is conservative by calculating the curl of 

the the field. Using Eq. (2.7a) for the curl, we get: 

 
      2/32222/32222/3222

ˆˆˆ

zyx

z

zyx

y

zyx

x
zyx
















kji

F


 

XAMPLE 3.7:  SCALAR POTENTIAL FOR A 

CONSERVATIVE FORCE FIELD  

 

Note that we can add a 

constant V0 to the scalar 

potential V, to find 

another potential function, 

V + V0. This is because 

for any constant 

V0, 


V0 = 0 and 

therefore we can write 




F (V +V0). So the 

scalar potential is 

arbitrary up to an additive 

constant. 

 

 

r̂ is the unit vector along 

the position vector r


from 

the origin to the point P.  
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
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




2/32222/3222

ˆ

zyx

x

y
zyx

y

x
k     (i) 

Calculating the partial derivatives in the first term in Eq. (i) we get: 

  

    2/52222/3222

3
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       
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Similarly, the remaining two terms in Eq. (i) are also zero. 

  0E


   

To determine the scalar potential associated with the field we calculate the 

negative of the work done in bringing the unit charge from infinity to the 

point P, which is: 






rrr

dr
r

q
dr

r

q
dV

22
ˆ.ˆ. rrrE



 

    r

q

r

q
r











 

 

 

 

 

 
          

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You have seen that when a vector field is irrotational (curl of the vector field is 

zero), it can be written as the gradient of a scalar function, which we call the 

scalar potential. What if the vector field were to be solenoidal? This brings us 

to the concept of a vector potential, which finds many applications in Physics. 

Let us now study about this. 

3.4.2    Vector Potentials  

Consider a solenoidal vector field F


. So 0.  F


. Recall that you have 

studied in Unit 2 that for any vector field A


,   0.  A


. Therefore we can 

write: 

A vector field with a zero 

divergence is called a 

solenoidal vector field. 

You will learn about 

electric potential in detail 

in Units 8 and 9. 
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  AFF


 0.  (3.39) 

A


 is called the vector potential associated with a solenoidal vector field F


. 

Just as the scalar potential for a conservative field is not unique and you can 

add an arbitrary constant to it, similarly the vector potential for a solenoidal 

field is also not unique. You can add the gradient of an arbitrary function, 

f


(x, y, z) to the vector potential, and the result would not change because 

the curl of a gradient of a scalar field is zero (   0 f


) .So: 

     FAA


 f  (3.40) 

3.5   SUMMARY 

  Concept Description 

Integral of a vector 

function  
 For a vector function in three dimensions defined as 

kjib ˆ)(ˆ)(ˆ)()( 321 tbtbtbt 


  the indefinite integral of )(tb


is given by: 

   dttbdttbdttbdtt )(ˆ)(ˆ)(ˆ)( 321 kjib


 

   The definite integral of )(tb


 over the interval  21, tt is:              

      

2

1

2

1

2

1

2

1

)(ˆ)(ˆ)(ˆ)( 321

t

t

t

t

t

t

t

t

dttbdttbdttbdtt kjib


                    

 For a vector function in two dimensions defined as jib ˆ)(ˆ)()( 21 tbtbt 


, the 

indefinite integral of )(tb


 is given by 

   dttbdttbdtt )(ˆ)(ˆ)( 21 jib


           

The definite integral of )(tb


over the interval  21, tt  is  

   

2

1

2

1

2

1

)(ˆ)(ˆ)( 21

t

t

t

t

t

t

dttbdttbdtt jib


 

Properties of integrals 

of vector functions 

 For any two vector functions )(and)( tt gf


 we can write 

     dttdttdttt )()()()( gfgf


 

 For the product of a vector function )(tf


 and a constant   we can write  

   dttdtt )()( ff


 

 For a vector function )(tf


 and a constant vector a


, we can write  

   dttdtt )( )](.[ fafa


 

   dtttdttt ))(()])(([ fafa

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Integrals of the scalar 

and vector products of 

vector functions 

 For any two vector functions of a scalar t,  )(ta


 and )(tb


, to 

evaluate the integrals             , and. 21 dtttIdtttI baba


we 

first compute the scalar and vector products in the integrands. We 

then integrate the result. 

Line integral  A line integral of a scalar or a vector field is a generalization of the 

single integral where the path of integration may be any curve in 

space. It can appear in three forms: 

  

CCC

dddlf lAlA


 and.,  

Work done by a force 

field F


 

 The work done by the force field F


 in moving an object along a 

path C  between the points P and Q is given by the line integral 

 
C

dW lF


.  

Line integral in the 

component form 

 The line integral of a three-dimensional force field 

kjiF ˆˆˆ
321 (x,y,z)F(x,y,z)F(x,y,z)F 


 along a path C in space can 

be written in terms of its component functions as: 

   

CC

dzFdyFdxFdW 321. lF


 

 The line integral of a two-dimensional force field 

jiF ˆˆ
21 (x,y)F(x,y)F 


 along a path C in the xy plane can be 

written  as: 

   

CC

dyFdxFdW 21. lF


 

Line integral of a vector 

field using the parametric 

representation of the 

path 

 The line integral of the vector field F


 along the curve C which has 

a parametric representation )(tr


 with 21 ttt   where )(tr


 is 

differentiable is: 

  







2

1

)(
.)]([.

t

tC

dt
dt

td
tdW

r
rFlF




  

Properties of the line 

integral 

 For a constant  , 

  

CC

dd lFlF


..  

    

CCC

ddd lGlFlGF


...  for two vector fields G


and F


. 

 

 

 If the path of integration  C is split into two curves C1 and C2
 

 

21

...

CCC

ddd lFlFlF


 

 If the orientation of the path of integration is reversed in any line 

integral, the integral gets multiplied by a negative sign. 

Circulation of a vector 

field 

 For any vector field F


 the closed contour integral along a curve C 


C

d lF


. is also called the circulation of the vector F


 around the path C. 
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Conservative vector fields  There are three different ways of saying that a vector field F


 is 

conservative or that the line integral of the vector field is path 

independent: 

 The vector field can be written as the gradient of a scalar field 

: 


F  

 The curl of the vector field is zero: 0F


  

 The circulation of the vector field is zero: 0. 
C

d lF


 

3.6   TERMINAL QUESTIONS 

1. Evaluate the following integrals: 

i)  dttttI 




0

ˆ)2(ˆcosˆsin4 kji  

ii)   

2

1

2 ˆlnˆˆ dtttetI t kji  

2. Obtain a function )(ta


which satisfies the relation 

  kji
a ˆ4ˆcosˆ 










t
tt

dt

(t)d


, given that kjia ˆ4ˆ3ˆ2)1( 


. 

3. Evaluate  







2

1

)(
).( dt

dt

td
t

a
a




 given that kjia ˆ4ˆ3ˆ2)2( 


 and 

 kjia ˆ5ˆˆ)1( 


. 

4. Evaluate  















1

0
2

2 )(
)( dt

dt

td
t

a
a




 given that kjia ˆˆ)1(ˆ2)( 2tttt 


. 

5. A two-dimensional force field is defined as 
 

,
ˆˆ

22 yx

yxk






ij
F


 

where k is a 

constant. Compute the work done by this  force in taking a particle from 

point P(1,0) to Q(0, 1) along a straight line. 

6. Determine the work done by a force     jiF ˆ2ˆ3 yxyx 


 in moving a 

particle along a curve in the xy plane given by 23;2 tytx   from t = 0 to  

t = 2. 

7. Calculate the line integral of the vector field   

kjiF ˆ10ˆ14ˆ)66( 22 xzyzyx 


 over the path C (PABQ) between the 

points P(0,0,0) and Q(1,1,1)  defined by three straight line segments PA, 

AB and BQ shown in Fig. 3.12. 

8. An object of mass m moves along a curve 

.10,ˆsinˆcosˆ)( 2  ttttt kjir


Calculate the total force acting on the 

object and the work done by the force. 

9. Show that the line integral of the vector field jiA ˆ)2(ˆ)12( 2 yxxy 


 

between the points (0, 0) and (2,1) is independent of the path between 

these points. 

Fig. 3.12: The path of 

integration between   

the points P and Q for                

TQ 7.  
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10. Calculate the circulation of the vector field jiF ˆˆ2 xyy 


 around the closed 

path along the parabola y = 2 x2 from (0,0) to (1,2) and back from (1, 2) to 

(0, 0) along the straight line y = 2x as shown in Fig. 3.13. 

3.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. a) dt
t

t
dt

t
I  





22 1

2ˆ
1

4ˆ  j   i   

              Cji


  ˆ1lnˆtan4 21 tt  

 b) We use Eq. (3.4) to write down the expression for the velocity of the 

object as: 

       dtdtt kav ˆ10


1
ˆ10 Ck


 t    (i) 

  To determine 1C


 (the constant vector) we use the initial condition on 

the velocity kiv ˆˆ)0( t


. Substituting t = 0 in Eq. (i) we get: 

   kv iC1
ˆˆ0 


t      (ii) 

Substituting for 1C


 from Eq. (ii) into Eq. (i) we get 

     kv i ˆ)101(ˆ tt 


              

To determine the position vector )(tr


 we use Eq. (3.4) to write: 

    dttdttt   )]ˆ)101(ˆ)()( kivr


     

                2
2 ˆt5ˆˆ Ckki


 tt     (iii) 

To evaluate 2C


 we substitute t = 0 in Eq. (iii) and using the given initial 

position vector kr ˆ2)0( t


we get:  

 kCr ˆ2)0( 2 


t        (iv) 

Substituting for 2C


 from Eq. (iv) into Eq. (iii) we get the position vector 

of the object: 

   kir ˆ)52(ˆ)( 2tttt 


 

2. a) ttttttttttttt  23322 3)1(3]ˆˆ3[.]ˆˆ)1(ˆ[)().( jikjiba


 

        









1

0

1

0

234
23

12

7

234

3
3)().(

ttt
dttttdttt

1

0

ba


 

 b)     kjijikjiba ˆ)43ˆ3ˆˆˆ3ˆˆ)1(ˆ)()( 234322 tt(ttttttttt 


  

        

1

0

2343
1

0

ˆ)43ˆ3ˆ)()( dttt(ttdttt kjiba


 

                       

1

0

3454
ˆ

3

4

4

3ˆ
5

3ˆ
4 



























 kji

tttt
  (i) 

Let 
21 tu  then  

       dtt
dt

du
2  

and  
 u

du
dt

t

t
21

2
 

       )1ln(ln 2tu   

ba


 

       

03

)1(

ˆˆˆ

2

2

tt

ttt





kji

 

Fig. 3.13: Figure for  

TQ 10.  

x  
 

y  

 

)(tr


 

)0,0(O

 

 



  

88  

Block 1                                                                                        Vector Analysis 

  or   kjiba

1

0

ˆ
12

7ˆ
5

3ˆ
4

1
)()(  dttt


 

3. We evaluate these integrals using Eq. (3.19b) with 

1and 2

21  xFxyF

 Along the path I the integral is the sum of the integrals along the straight 

line segments OA and AB (see Fig. 3.14): 

      

AB

yx

OA

yx

ABOAl

I dyFdxFdyFdxFdddI lFlFlF


...  

               

ABOA

dyxxydxdyxxydx )1()1( 22    (i) 

 
Along OA,

  
  00;10  dyyx      (ii) 

 Along AB 

  01;10  dxxy      (iii) 

 So substituting from Eqs. (ii) and (iii) into Eq.(i) we get 

  
    22)11()1(

1

0

1
0

2   ydydyxI

AB

I  

Along the path II the integral is the sum of the integrals along the straight 

line segments OD and DB: 

     

DB

yx

OD

yx

DBODll

II dyFdxFdyFdxFdddI lFlFlF


...  

             

DBOD

dyxxydxdyxxydx )1()1( 22   (iv) 

 Along OD,
  

   00;10  dxxy      (v) 

 Along DB, 

   01;10  dyyx      (vi) 

 So substituting from Eqs. (v) and (vi) into Eq.(iv) we get 

   
 

2

3

2

1

0

2
1

0

1
0

1

0









 

x
yxdxdyxdxdyI

DBOD

II
- 

 

 Along the path III the integral is the integral along the straight line 

segment OB: 

      

OBOB

yx

OBIII

III dyxxydxdyFdxFddI )1(.. 2lFlF


 

            (vii) 

 The equation of the straight line OB is y = x. The limits on x and y are
 

  10;10  yx       (viii) 

So substituting from Eqs. (viii) and y= x  into Eq.(vii) and using the 

methods of Example 3.3 we get: 

Fig. 3.14: Path of 

integration for SAQ 3.  
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   

1

0

2

1

0

22 )1()1( dyydxxdyxxydxI

OB

III
 

 On evaluating these integrals we get 

  3

5

3

4

3

1

33

1

0

3
1

0

3


















 y

yx
IIII  

As you can see, the value of the line integral along each of these paths is 

different.  

4. The parametric equation of the parabola y = x2 (Fig. 3.15) is: 

   2)(,)( ttyttx    

You can check that this satisfies the equation .2xy   To obtain the end 

points, we write 

   00)(;0)( 1
2
1111  tttyttx  

 and 

   24)(;2)( 2
2
2222  tttyttx  

  So the parametric representation is 

   20;̂ˆ)(r 2  tttt ji


 

5. We use Eq. (3.27) to evaluate the line integral with:  

      

;)()()(;ˆˆˆ)(;
)(

ˆˆˆ

2/32223
ttztytxtttt

zyx

zyx

r





 kjir

kjir
F




  

 and      3;1 21  tt  

  The derivative of r


is: 

  
  kjikji

r ˆˆˆˆˆˆ  ttt
dt

d

dt

d


                              (i) 

 In terms of t, we can write F


as: 

 

     kji
kjikji

rF ˆˆˆ
33

1

)3(

ˆˆˆ

)(

ˆˆˆ
)((

22/322/3222










tt

ttt

ttt

ttt
t



 
(ii)  

   Using the results of Eqs. (i) and (ii) in Eq. (3.27) we get: 

  

   
9

32

3

1ˆˆˆ.
33

ˆˆˆ
.

3

1
2

3

1
2

3

1


















  dt

t
dt

t
dt

dt

d
I kji

kjir
F


   

   
     

6. Using Eq. (3.25) we write the parametric equation for the circle C 

422  yx  as: 

   20,̂sin2ˆcos2)( tttt jir


     (i) 

 Writing down A


in terms of t using ttyttx sin2)(;cos2)(  we get: 

Fig. 3.15 
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   jirA ˆ)sin2cos12(ˆsincos4))(( 2 ttttt 


 (ii)  

 Differentiating Eq. (i) w.r.t. t we get  

   
ji

r ˆcos2ˆsin2 tt
dt

d




   

Using Eq. (3.27), with ,AF


  we get the circulation of A


 as (read the see 

margin remark):  

 

   




2

0

2 ˆcos2ˆsin2.ˆ)sin2cos12(ˆsincos4. dtttttttd

C

jijilA


    

                     

 dtttttt




2

0

32 cossin4cos24cossin8     

                      

 dttttttt




2

0

22 cossin4cos)sin1(24cossin8    

                      

0]cos24cossin4cossin32[

2

0

2  


dtttttt

 

              0. 
C

d lA


    

 The circulation of the vector field is zero. 

 
Terminal Questions 

1. i)  dttdttdttI  



000

2ˆcosˆsin4ˆ kji  

        













0

2

00 2
2ˆsinˆcos4ˆ t
ttt kji  

       ki ˆ
2

2ˆ8
2








 
  

 ii)   dttettI t

 

2

1

2 ˆlnˆˆ kji  

              =     kji ˆlnˆˆ
3

2
1

2

1

2

1

3

tttete
t tt 














 kji ˆ12ln2ˆˆ

3

7 2  e  

2. Using Eq. (3.4) with    kjib ˆ4ˆcosˆ 









t
tt(t)


 we can write: 

  Ckjia

















  dt

t
ttt ˆ4ˆcosˆ)(  

)cosandsin

(using
0

0
0

cossin

2

2

0

2

dttdutu

duu

dttt



 




0

sincos

2

0

2

0







tdtt

     

0

2

sin
cossin

2

0

22

0








t

dttt
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 where C


 is a constant vector. Then 

Ckjia






 ˆln4ˆsinˆ

3

2
)( 2/3 t

t
tt  (i) 

 Substituting t = 1 in Eq. (i) and given that kjia ˆ4ˆ3ˆ2)1( 


 we get: 

Cia


 ˆ
3

2
)1(t  (ii) 

      kji ˆ4ˆ3ˆ2    

     kjiC ˆ4ˆ3ˆ
3

4



 (iii) 

Substituting for C


 in Eq. (i) we get: 

kjia ˆ)4ln4(ˆ3
sinˆ)2(

3

2
)( 2/3 













 t

t
tt


 

3. For any vector )(ta


we can write: 

    









dt

td
tt

dt

td

dt

td
ttt

dt

d )(
)(2)(

)()(
)()()(

a
.aa.

aa
.aa.a







    (i)  

 or   

   )().(
2

1)(
).( tt

dt

d

dt

td
t aa

a
a





         (ii) 

 Then we can write: 

              
2

1

2

1

2

1

2

1

)().(
2

1
)().(

2

1
)().(

2

1)(
).( ttttddttt

dt

d
dt

dt

td
t aaaaaa

a
a











  

 Using kjia ˆ4ˆ3ˆ2)2( 


 and ,ˆ5ˆˆ)1( kjia 


 we get: 

   1]2729[
2

1
)1()1()2()2(

2

1)(
).(

2

1









 a.aa.a

a
a





dt

dt

td
t  

4. For any vector )(ta


we can write: 

2

2

2

2 )(
)(

)(
)(

)()()(
)(

dt

td
t

dt

td
t

dt

td

dt

td

dt

td
t

dt

d a
a

a
a

aaa
a


















  (i) 

 as 0
aa 


dt

td

dt

td )()(
. So we can write: 

  









dt

td
t

dt

d

dt

td
t

)(
)(

)(
)(

2

2 a
a

a
a







                    (ii) 

 Therefore, 

 



























1

0

1

0

2

2 )(
)(

)(
)(

)(
)(

dt

td
tddt

dt

td
t

dt

d
dt

dt

td
t

a
a

a
a

a
a

1

0










   (iii) 
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 The integral is then: 

1

0
2

2 )(
)(

)(
)( 

















 dt

td
tdt

dt

td
t

a
a

a
a

1

0







 (iv) 

 Given that kjia ˆˆ)1(ˆ2)( 2tttt 


 we can write: 

kji
a ˆ2ˆˆ2

)(
t

dt

td




 

  
dt

td
t

)(
)(

a
a


     kjikjikji ˆ2ˆ2ˆ)2(ˆ2ˆˆ2ˆˆ)1(ˆ2 222  ttttttt   

   (v) 

   

1

0

1

0
2

2 )(
)(

)(
)( 























 dt

td
tdt

dt

td
t

a
a

a
a







    

                                                    ji ˆ2ˆ       

5. In order to evaluate the integral we have to express r


d  and F


 as a 

function of  the same parameter, say t. The equation of PQ (Fig. 3.16)as 

explained in Example 3.4 is: 

 xyyx  11  (i) 

This can be expressed in the parameteric form as ttyttx  1)(;)( ,  

where t goes from 1 to 0. Following the steps in Example 3.5, we first write 

the position vector: 

    jijir ˆ1ˆˆˆ ttyx 


 and   ji
r ˆˆ 

dt

d


 

 Next we write (t)FF


  

  
 
 22 1

ˆ1ˆ

tt

tt
k






ij
F


 

  
    

 22 1

ˆˆ.ˆˆ1
.

tt

ttk

dt

d






jijir
F


 

 
122122

1
22 







tt

k

tt

tt
k  

 The work done is calculated using Eq. (3.30) as: 

   


0

1

2 122 tt

dt
kW

 (ii) 

      


















0

1

2

0

1
2

4

1

2

12

2

12
t

dtk

tt

dtk

           

                      
2

)(
2




kk

    

(read the margin remark) 

 Alternative Method 

 The integral can be evaluated using Eq. (3.19b) as well, as follows: 

dt

d
t

a
a




)(  

    

t

ttt

212
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ˆˆˆ
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


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Fig. 3.16: Figure for TQ 5. 
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222221 ;

yx

x
F

yx

y
F







  

  as :  






















PQPQPQ

dy
yx

kx
dx

yx

ky
d

2222
. rF


 (iii) 

 The equation of the straight line PQ is x + y = 1 

   y = 1 x and  dy =  dx, (iv)   

x2 + y2 = x2 + (1  x)2 = 2x2 – 2x + 1    (v)                      

Substituting from Eqs. (iv) and (v) into Eq.(iii)  we get (see margin remark): 

  
 












0

1
22 122122

1
.

xPQPQ
xx

dx
k

xx

dxxxdx
drF


2




k
 (vi) 

6. We use Eq. (3.29b) to evaluate the line integral with:  

      
2;0,3)(,2)(,̂)2(ˆ)3( 21

2  ttttyttxyxyx jiF


  (i) 

  From Eq. (i) we write: 

   
ttytx 6)(,2)( 

 

 (ii) 

 In terms of t, we can write the components of F


as: 

   

2
2

2
1 34)2(,92)3( ttyxFttyxF 

 
  (iii)  

  Using the results of Eqs. (i) and (ii) in Eq. (3.29b) we get: 

   
48

2

9
22

)1824184())()((

2

0

4
32

2

0

322
2

2

0

1











 

t
tt

dtttttdttyFtxFI

 

7. We calculate the line integral of the vector field using Eq. (3.19a) with: 
22 10,14),66( xzFyzFyxF zyx  . Then 

   

   

C

dzxzdyyzdxyxI 22 10)14()66(
    

 

We use the path C between P and Q shown in Fig. 3.17. It consists of the 

straight line 1C  from )0,0,0(P  to ),0,0,1(A  then the straight line 2C from   

)0,0,1(A  to )0,1,1(B  and finally the straight line 3C  from )0,1,1(B  to 

)1,1,1(Q . Using the property of the line integral given in Eq. (3.33), we can 

write the line integral along the path C as: 

  

  

  













BQ

AB

PA

BQABPA

dzxzdyyzdxyx

dzxzdyyzdxyx

dzxzdyyzdxyx

IIII

22

22

22

10)14()66(

10)14()66(

10)14()66(

 

 Along ,PA  00,10  dzdyzyx  

The integral in Eq. (6) is 
the same as in Eq.(2) 
and is evaluated in the 
same way. 
 

(i) 

Note that the integral 

evaluated in Eq. (vi) is the 

same as the integral you 

evaluated in Eq. (ii).  
 

Fig. 3.17: The path of 

integration between the 

points P and Q for TQ 7.  
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2
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6
6

1

0

1

0

3
2 














 

x

PA
x

dxxI     (ii) 

 Along :AB  00,1,10  dzdxzxy   

   

014

1

0






y

AB yzdyI      (iii) 

 Along 01,1,10,  dydxyxzBQ   

 And 

 
3

10

3

10
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1

0

31

0

2 







 



z
dzxzI

z

BQ                (iv) 

 
3
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3
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02  I

 
8. We first derive an expression for the acceleration of the object: 

2

2

dt

d r
a





 

   
  kjikji

r ˆcosˆsinˆ2ˆsinˆcosˆ2 tttttt
dt

d

dt

d




 

   
  kjikji

r ˆsinˆcosˆ2ˆcosˆsinˆ2
2

2

ttttt
dt

d

dt

d




 

The force acting on the object is:  

 
)ˆsinˆcosˆ2( kjiaF ttmm 



    

 Using Eq. (3.30), the work done is: 

   

dt
dt

d
W  










1

0

.
r

F



 

 Using the results of  Eqs. (i) and (ii) in Eq.(iii): 

    dttttttmW  

1

0

ˆcosˆsinˆ2.ˆsinˆcosˆ2 kjikji

 

         

      mtmdttmdttttttm 224cossincossin4
1

0
2

1

0

1

0

   

9. Refer to Fig. 3.18. Let us calculate the line integral of the field A


 between 

the points A(0,0) and  B(2,1), along two different paths: One is the straight 

line AB  and the other is ACB. Let us first consider the path of integration 

AB. The equation of the straight line AB is 
2

x
y  (read the margin remark).  

We use Eq. (3.19b) for the line integral along AB with  

  yxFxyF 2;12and 2
21  AF


 (i) 

 We get the integral of A


along AB as: 

(i) 

(ii) 

(iii) 

The equation of a straight 

line between two points 

(x1,y1) and (x2,y2) in the xy 

plane is: 

 1
12

12
1 xx

xx

yy
yy 



















 

For the line AB, we get     

xy
2

1
  

)1,2,0,0( 2211  yxyx
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 

ABABAB

AB dyyxdxxydI )2()12(. 2lA


             (ii) 

 The limits on x and y are as follows: 

  10;20  yx   (iii) 

To evaluate the line integral over AB, we need to write each one of the 

integrals in Eq. (ii) as an integral over one variable. So we write (read the 

margin remark): 

  

5
3

4

3
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










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
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



 

 

y
y

x
x

dyyydxx

dyyxdxxyIAB

                          

(iv)  

Next we evaluate the integral along ACB, which is the sum of the line 

integrals over AC and CB. 

               

 

CBACACB

ACB dddI lAlAlA


...              (v) 

 Along AC, the value of y is a constant (y = 0) and therefore dy = 0. 

  

  2)1)0(2()12(.
2
0

1

0

2

0

  xdxxdxxyd

AC

lA


   (vi) 

 Along CB, the value of x is constant (x = 2), so dx = 0. 

    34)24()2(.
1
0

2

1

0

1

0

2   yydyydyyxd

CB

lA


   (vii) 

 Substituting from Eq. (vi) and (vii) into Eq. (v), we get: 

  .532 ACBI    (viii) 

Since the value of the integral is same for two different paths AB and ACB, 
we can say that the line integral is path independent. 

10. The closed path of integration C is made up of the curves 21 and CC  
between the points O(0,0)and A (1,2) (see Fig. 3.14 reproduced here as 

Fig. 3.19). 1C  is described by the parabola 22xy  between the  points O 

and A. 2C  is the straight line xy 2 from A to O, so the circulation of 

F


is: 

 
 

21

...

CCC

dddI lFlFlF


  

We parameterize the parabola 22xy  as : 

Note that the integration 

is along the line AB given 

by 
2

x
y  and not along 

the x or y axes. 

Therefore, when we 

evaluate Eq. (ii), to 

integrate over x, we must 

write y in terms of x (i.e 

2

x
y  ) in the  integrand. 

Similarly, when we 

integrate over y, we write 

x in terms of y (i.e., 

yx 2 ). 

 

 

Fig. 3.18: Paths of 

integration for TQ 9.  
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Fig. 3.19: Figure for TQ 10. 
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  10;2)(;)(;ˆ2ˆ)( 22  tttyttxttt jir


    

Therefore    jijiFji
r ˆ2ˆ4ˆˆ,̂4ˆˆ

342 ttxyyt
dt

d
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
      (i) 

Using Eq. (3.30) we then get: 
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We next calculate ..

2

2 

C

dI lF


The parametric representation for the 

straight line C2 is 

  01,2)(,)(;ˆ2ˆ)(  tttyttxttt jir


 

Then, 
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d
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   (ii) 

Using Eq. (3.30) we get: 
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 Finally, adding I1 and I2   we get: 
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21  III     

Here we have used the 

parametric representation to 

evaluate the integral along 

AO. Alternatively we can 

write, using Eq. (3.19b) and  

y = 2x: 

 

3

8

2
4

2
4

0

2

2
0

1

2

2
2

2
2

2

2



























dy
y

dxx

dy
y

dxx

xydydxyI

C

C

 

 




