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2.1 INTRODUCTION 

In Unit 1, technique of reducing any system of forces to a force-couple system at 
some arbitrary point O was introduced. When this resultant force and the resultant 
couple (after the process of reduction) both are equal to zero, the system is said to 
be in equilibrium.  Now, we study the necessary and sufficient conditions for the 
equilibrium of a rigid body. This will enable us to determine the unknown forces 
applied to the rigid body in equilibrium or unknown reactions exerted on it by its 
supports. This will help to analyze any structure, which is the first step in the 
design of structures. 

Objectives 
After studying this unit, you should be able to 

• classify various types of supports and constraints, 

• draw free-body diagrams, 

• conceptualise conditions of equilibrium, 

• determine the unknown forces acting on a body, and 

• determine beam reactions for various types of loads. 

2.2 TYPES OF SUPPORTS AND CONSTRAINTS 

Bodies in a structural system are connected with the surroundings in a number of 
standard types. These connections and supports may be in the form of rollers, 
rockers, ball and socket joints, frictional surfaces, short links, cables, pins, hinges, 
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Applied Mechanics etc. They restrict the movement of the bodies in particular direction by offering 
reactions. In some cases, it is easier to ascertain the direction of reactions by 
considering the direction of possible movement in absence of the support. 
Consider, for example, a rigid body kept on a table. If the table would not have 
been there, the rigid body would have fallen down due to gravity. The table is 
restricting the downward movement of the body. This is possible if the table is 
able to offer a force in upward direction. Thus, you can ascertain that the 
direction of reaction offered by the table will be upward. 

2.2.1 Plane Structures 
A plane structure lies in one plane, e.g. a thin flat plate, an assembly of straight 
bars lying in one plane, an arch, a simply supported beam, a cantilever, and the 
like. Some plane structures are constrained by supports that permit no rigid body 
movement upon application of loads. The reactions offered by various supports 
connecting plane structures can be grouped under three categories: 

Reactions Equivalent to a Force with Known Line of Action 

Figure 2.1(a) illustrates some of the supports in this category. They include 
rollers, rockers, frictionless surfaces, short links, cables, collars on 
frictionless rods and frictionless pins in slots. These supports prevent 
motion in one direction only. The direction of reaction can therefore be 
ascertained easily. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1(a) 

Reactions Equivalent to a Force of Unknown Direction 

A frictionless hinge or pin, knife-edge support, rough surfaces are some of 
the examples of this category shown in Figure 2.1(b). These supports 
prevent translation of the free body in all directions. However, rotation of 
the body about the connection is possible. The reactions offered by these 
supports involve two unknowns : magnitude and direction. They are usually 
represented by the components along two mutually perpendicular directions 
say horizontal and vertical. 

Reactions Equivalent to a Force and a Couple 

A beam built in a wall as shown in Figure 2.1(c) is an example of this 
category. Such a support offers full restraint against rotation and 
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Body Diagramtranslational movement. Reactions of this group involve three unknowns.  
Generally these are represented by two components of the force along x and 
y directions and by the movement of the couple. 

 

 
 
 
 
 
 
 
 
 

Figure 2.1(b) 

 

 

 
 

 
Figure 2.1(c) 

2.2.2 Space Structures 
A space structure is a structure in a three-dimensional space. There are six 
fundamental motions possible viz. translation in x, y, and z directions and 
rotations about the x, y, and z axes. Depending on the constraints provided by the 
supports the number of unknown reactions vary from one to six (Figure 2.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 
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Applied Mechanics Frictionless surfaces, cables and ball supports prevent translation in one direction 
only and thus exert a single force of known line of action. The magnitude of the 
reaction is the only unknown in such cases. Wheels on rails or rollers on rough 
surfaces involve two unknown reaction components as motion in two directions is 
restricted. In case of ball and socket joints or rough surfaces in direct contact 
there are three unknown as they prevent translation in three directions. A 
universal joint which does not allow rotation about one axis will involve 4 
unknowns viz. three components along x, y and z directions and a couple. A fixed 
support does not allow any motion, neither translation nor rotation. This involves 
maximum number of reaction components : three force components and three 
couples. 

2.3 FREE BODY DIAGRAMS 

To study the balance of forces, viz-a-viz, any structure, you should be in a 
position to identify all the forces acting on it. A structure can be divided into 
various parts for simplicity. If you separate a body from its surrounding and draw 
a diagram to represent that body and indicate all the forces from the surroundings 
that act on it, such a diagram is called a free-body diagram. 

Example 2.1 

Consider the propped cantilever shown in Figure 2.3(a). To draw the  
free-body diagram for the beam, isolate the beam from its surroundings.  
The fixed and the hinge supports will replaced by constraining forces 
offered by them. All external loads will also be replaced by forces exerting 
on it, and then the resulting diagram is called free-body diagram of the 
beam. 

 
 
 
 
 
 
 
 

(a)      (b) 

Figure 2.3 

Solution 

Free-body diagram for the beam in Figure 2.3(b) shows : 

(i) beam AB, 

(ii) constraining forces HA, VA and MA offered by the fixed support at A, 

(iii) constraining forces RB offered by the roller support B, and B

(iv) the external load acting at C. 

Example 2.2 

A 3 m long boom is held by a ball and socket joint at A and by two cables 
CD and BE. It carries a load of 20kN at B. Draw Free-body diagram for the 
boom AB (Figure 2.4(a)). 
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(a)       (b) 

Figure 2.4 

Solution 

Free-body diagram for the boom AB in Figure 2.4(b) shows 

(i) boom AB, 

(ii) constraining forces Ax, Ay and Az due to ball and socket support at A, 

(iii) tension TCD in cable CD, and 

(iv) tension TBE in cable BE. 

(v) the external load (20 kN) acting at B. 

SAQ 1 
(a) Draw the free-body diagram for the member AB in following cases : 

 

 

 

 

 

 
(a)       (b) 

 

 

 

 

 

 

 
 

(c)      (d) 

In Figure 2.5(e), member AB is supported by a ball and socket at B 
and leans against a smooth wall at A.  Cord CD is attached to the  
mid-point of AB. 

In Figure 2.5(f), DF and CE are cables, joint A is ball and socket 
joint. 
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(e)      (f) 

Figure 2.5 

 (b) Identify the reaction components possible in case of following 
supports and connections : 

(i) Frictionless pin in slot 

(ii) Hinge Point 

(iii) Wheel on rail 

(iv) Hinge and bearing supporting axial thrust and radial load 
(Figure 2.6) 

(v) Ball and socket joint 

(vi) Fixed support 

 

 

 

 

 
Figure 2.6 

 

 

 

2.4 EQUILIBRIUM OF COPLANAR FORCES 

Consider a rigid body acted upon by a number of coplanar forces. These forces 
will cause the rigid body either to 

(i) move in a particular direction without rotating, or 

(ii) rotate at its own place without moving, or 

(iii) rotate about itself and at the same time move in any particular 
direction, or 

(iv) remain completely at rest 

The last case is that of the state of equilibrium. To move the body in a particular 
direction there must exist a resultant force and to rotate there must exist a 
resultant couple. If the resultant force and the resultant couple both are absent, the 
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Body Diagrambody can neither move nor rotate. It will remain at rest. Let us study some typical 
cases. 

2.4.1 Concurrent Forces 
If a number of coplanar concurrent forces are acting on a body then there may 
exist a single resultant force passing through the point of intersection of all the 
concurrent forces. But there will not exist any couple. The resultant force may 
have two components say Rx and Ry where x and y are any two mutually 
perpendicular co-ordinate axes. If the body is to be at rest then you must get both 
these components equal to zero. The conditions for equilibrium in case of 
coplanar concurrent forces are, therefore, as follow : 

Rx = 0 

  Ry = 0 

But   and xx FR Σ= yy FR Σ=  

∴   and 0=Σ xF 0=Σ yF  

(i) The algebraic sum of the resolved components of all forces in any 
direction must be equal to zero. 

(ii) The algebraic sum of the resolved components of all forces in a 
direction at right angles to the first direction must be equal to zero. 

Example 2.3 

Four coplanar concurrent forces act at a point and keep it at rest. These are 
shown in Figure 2.7. Determine the forces P and Q. 

 

 
 
 
 
 
 
 
 
 
 

Figure 2.7 
Solution 

Let us assume that forces P and Q act away from point O. As the  
point O remains at rest we can apply equations of equilibrium, such as : 

0=Σ xF  

∴  060cos126060cos310 oo =−+  P

∴  05.012605.0310 =×−+ P

∴ N640
5.0
310630

=
−

=P  

As P here works out as a positive quantity, the assumed direction is 
therefore correct. Therefore, P acts away from O. Now, similarly, 
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∴  060sin126060sin oo =−+ QP

∴  o60sin)1260640( +=Q

∴  Q = 1645.4 N 

As Q here comes out also as positive, the assumed direction of Q is correct. 
Therefore, Q acts away from O. 

Example 2.4 

A smooth sphere weighing 200 N is resting against smooth walls as shown 
in Figure 2.8. Determine the reactions at the supports. 

 

 

 

 

 

 
 

Figure 2.8 

Solution 

Let us first ascertain the directions of reactions. As the wall (A) is vertical 
and smooth the reaction at A will be horizontal, i.e. normal to the wall.  
Similarly, the reaction at B will be normal to the line (wall) inclined at 60o 
to the horizontal. Both these reactions will pass through O the centre of the 
sphere because these are normals drawn to the tangents of the sphere at A 
and B.  The weight of the cylinder can be assumed concentrated at O. Thus, 
three concurrent forces keep the sphere at rest. Let us apply conditions of 
equilibrium. 

0=Σ xF  

∴ 0θcos =− BA RR   (θ = 30o by geometry of the figure) 

    BA RR 866.0=  

0=Σ yF  

∴  030sin o =−WRB

∴ 200)5.0( =BR  

∴ N400
5.0

200
==BR  

∴ N4.346400866.0 =×=AR  

The same problem can be solved using Lami’s Theorem which states, “If 
three forces (in a plane) acting on a body keep it at rest then each force is 
proportional to the sine of the angle between the other two forces”  
(Figure 2.9). 
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)180(sin90sin)90(sin ooo θ−

==
θ+

WRR BA  

 

 

 

 

 
 
 

 
 

Figure 2.9 

Putting the known values, we get 

 oo 30sin
200

130cos
== BA RR  

∴  N4.346
30sin

30cos200
o

o
==AR  

∴  N0.400
30sin

200
o ==BR  

SAQ 2 
Determine the minimum value of force P required just to start the wheel 
over the step 300 mm high. The diameter of the wheel is 1.2 m and the 
weight is 800 N. Also find the direction of P (Figure 2.10). 

(Note that the reaction offered by the ground is zero when the wheel is just 
on the point of moving over the step.) 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 
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If non-concurrent coplanar forces are acting on a body, their resultant may be in 
the form of a couple in addition to a resultant force. If a body is to remain at rest 
then there should neither be a resultant force nor a resultant moment, i.e. 

0=Σ= xx FR  

0=Σ= yy FR  

  M0 = 0 

Therefore, in addition to the two conditions of equilibrium as in case of 
concurrent forces there is one more condition of equilibrium which can be stated 
in words as : 

“The algebraic sum of moments of all the forces about any point in 
their planes must be equal to zero.” 

Example 2.5 

A board ABCD is held in position as shown in Figure 2.11 by a cable BE 
and hinge at A. If the weight of the board is 5 kN, determine the reactions at 
hinge A and the tension T in the cable. 

Solution 

Let the components of the reaction at A be HA and VA as shown in  
Figure 2.11. 

The board is at rest under the action of four forces HA, VA, T and W. 

Taking moments of all forces about A, we get 

0=Σ AM  

∴   08.06.1)30sin( o =×+××− WT

∴  08.058.0 =×+− T  

∴  kN5
8.0

4
==T  

 

 

 

 

 

 

 

 
 
 

 
Figure 2.11 
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Body Diagramand,  0=Σ xF

∴   030cos o =− TH A

∴   o30cosTH A =

On putting T = 5 kN, we have 

866.05×=AH  

          = 4.33 kN 

and,  0=Σ yF

∴   030sin o =−+ WTVA

∴   o30sinTWVA −=

         = 5 – 5 × 0.5 

       = 2.5 kN 

Now  22
AAA VHR +=  

        22 50.233.4 +=  

          = 5kN 

       
A

A
H
V1tan−=θ  

          
33.4
50.2tan 1−=  

            = 30o

Hence, reaction  has a magnitude of 5kN and is inclined at 30AR o to the 
horizontal. 

Note : You may attempt the same problem considering the board to be 
subjected to 3 forces only viz. RA, T and W. As three forces keep the 
body at rest, these must be concurrent, find the point of concurrence 
and get the values of unknowns RA and T; and, knowing the 
directions of RA, you may also use Lami’s Theorem either. 

And, consider 0=Σ xF  and  0=Σ yF

2.4.3 Beam Reactions for Various Types of Loads 
The conditions of equilibrium for rigid bodies can be used to find the reactions of 
a beam. Depending on support conditions, beams are classified as cantilever, 
simply supported, continuous, propped cantilever and fixed beams. If a beam is 
fixed at one end and free at the other it is called a cantilever. As at fixed end 
neither translation nor rotation is possible there will be three unknown reaction 
components, HA, VA and MA. There are three equations of equilibrium. Hence, 
these unknowns can be found out. Similarly, the reactions in case of simply 
supported beam can also be found out. In simply supported beam or in a beam 
hinged at one end and roller at other end, the number of unknowns is limited to 
three. Hence these beams are called statically determinate beams. You can 
determine the reactions using the static conditions of equilibrium. But if the 
number of unknowns exceed three as in the case of continuous beams, propped 
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cantilever and fixed beams, you cannot determine the unknowns just by making 
use of statical equations of equilibrium. Therefore, these beams are called 
statically indeterminate beams. Here, in this unit, you will learn to find the 
reactions in case of statically determinate beams only. 

Applied Mechanics 

A beam is a structural member generally carrying transverse loads. These loads 
can be concentrated, uniformly distributed or with triangular distribution. Let us 
study each type of loading by solving some problems. 

Example 2.6 

A cantilever AB, 1.8 m long is fixed at A and carries uniformly distributed 
load of 20 kN/m over its entire length, and a point load of 30 kN at the free 
end. Determine the reactions at A (Figure 2.12). 

 
 
 
 
 
 
 
 
 

Figure 2.12 

Solution 

Let the reaction components at A be HA, VA and MA as shown in  
Figure 2.12. Let us replace the uniformly distributed load of 20 kN/m by a 
single force of 20 × 1.8 = 36 kN acting at the centre of AB, i.e. at 0.9 m 
from end A. There is no horizontal force acting on the beam. 

0=Σ xF  

∴  0=AH  

0=Σ yF  

∴  030)8.120( =−×−AV  

∴  3036 +=AV  

        = 66 kN 

Taking moments about A, we get 

0=Σ AM  

∴  08.130)9.0()8.120( =×+×+− AM  

∴  544.32 +=AM  

          = 86.4 kN-m 

Therefore, the reaction at A consists of a vertical force acting upwards with 
a magnitude of 66 kN, and an anticlockwise moment of 86.4 kN-m. 

Example 2.7 

A beam AB is hinged at A and is supported at C. It is loaded as shown in 
Figure 2.13.  Find out the reactions at A and C. 
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Figure 2.13 

Solution 

Let the reaction components at A be HA and VA as shown in Figure 2.13.  
The reaction at C will be acting vertically upwards being a roller point. As 
the beam is at rest under the action of the forces, the conditions of 
equilibrium can be applied. 

Taking moments of all forces about A, we get 

0=Σ AM  

  092475)60sin40(
2
3)318( o =×+×−×+×× cR  

∴  021672.17381 =+−+ cR

∴ 
7

2162.17381 ++
=CR  = 67.172 kN 

Note : Moments due to HA, VA and 40 cos 60o about A are zero as they pass 
through point A. Clockwise moments are taken as positive. 

Now,  0=Σ xF

∴  060cos40 o =−AH

∴  kN205.040 =×=AH

0=Σ yF  

∴  02460sin40)318( o =−+−×− cA RV

∴  24172.6764.3454 +−+=AV

         = 45.468 kN 

              2222 468.4520 +=+= AAA VHR  = 49.672 kN 

         2734.2
20
468.45tan ===θ

A

A
H
V  

∴  425166257.66θ oo ′′′==

The reaction at A has a magnitude of 49.672 kN and is inclined at 66o 15′ 
24″ with respect to horizontal whereas reaction at C is acting vertically 
upwards and has a magnitude of 67.172 kN. 
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Determine the reactions of the beams loaded as shown in Figures 2.14(a), 
(b), (c) and (d). 

 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 
 
 
 
 
 

(d) 

Figure 2.14 
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A truss is defined as “a structure which is formed by assembling of straight, rigid 
bars joined together at their ends, so as to form a framework”. In engineering the 
truss is used in a variety of conditions. A few examples are : 

(i) roofs, 
(ii) bridges, 
(iii) transmission line towers, 
(iv) chassis of vehicles etc. 

Figure 2.15 shows the outlines of some common types of trusses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15 : Common Types of Trusses 

2.5.1 Truss Analysis 
Loads applied to a truss cause axial forces in its members if the joints of the truss 
are appropriately done; and thus there occur no bending moments in the members. 
This obviously requires comparatively thinner sections of members – saving the 
material used. Hence, trusses that way are economical to use. These forces acting 
at their ends either tend to pull them apart or to compress or crush them. In the 
first case, the member is said to be “in tension”, and in the second “in 
compression”.  Computation of these forces, i.e. their magnitudes and sense, for 
each member of the truss is called its analysis. 
The primary analysis of a plane truss is based on the following assumptions : 

(i) Every member is straight and is connected to the truss only at its ends, 
The axes of all the members lie in one plane, called the plane of the 
truss. 

(ii) The self weights of the members are assumed to be very small in 
comparison to the applied loads and hence neglected (i.e. assuming no 
bending moments to operate). 

(iii) Every joint where two or more members are connected together is 
made by a single pin passing through them and considered to be 
frictionless. The pin at the joint can, therefore, exert only forces but 
no moments on the members connected by it. 
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Applied Mechanics (iv) Forces are applied to the truss only at the pins of the joints in the 
plane of the truss and never on a member at a point in between its two 
ends. 

In a real truss, however, members may be connected at points between their ends, 
the weights of the members are not negligible, the joints may be welded, rivetted 
or bolted and hence are far from being frictionless and loads are often applied at 
points other than the joints. The assumptions above are therefore not always fully 
valid. However the analysis of a truss based on the above assumptions is 
sufficiently accurate for the preliminary engineering design. 
Above assumptions in truss analysis leads to following observations : 

(i) Every member becomes a 2-force body in equilibrium, and 
(ii) Every joint becomes the centre of a concurrent force-system in 

equilibrium. 
Let us consider the Free Body Diagram of a member [AB of Figure 2.15(b)] 
which is shown in Figure 2.16(a). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.16 

As consequence of the assumptions, it can be concluded that : 
(i) Since it has negligible weight, no force acts on it corresponding to its 

weight. 
(ii) Since forces are applied to the truss only at the joints, no load acts on 

it between A and B. 
(iii) It is connected to the truss at joints A and B, but since they are 

hinged, each of the pins to which AB is connected can exert on AB 
only a force such as PAB and PBA at A and B respectively but no 
moment at the two points. As shown by the dotted arrows in Figure 
2.16(a). They are shown as such because their directions are unknown 
at this stage. 

Thus, since there are only two forces on AB, which keep it in equilibrium, AB 
becomes a two force body with the result, that PAB and PBA are equal, opposite in 
direction, and have a common line of action along the axis of the member AB. 
This force-pair which is axial to the member must have senses of its individual 
components either away from each other as in Figure 2.16(b) or towards each 
other as in (c). In the former case, the member will be in tension (T) while in the 
latter case it will be in compression (C). 
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Body DiagramIt must be clearly understood that the forces shown in Figures 2.16(a), (b) and (c) 
are those exerted by the joints on the member. Since they have the same 
magnitude and direction and differ only in sense, we may identify the pairs by 
their common magnitude and by whether the member is in tension or compression 
due to them. Each member is subject to either axial tension or axial compression 
and there is no bending, shearing or twisting of it. 
Let us now consider the free-body diagram (F. B. D) of point B, of Figure 
2.16(c). It (i.e. AB) is connected to members 1, 2, 3, and therefore they will exert 
forces. Assuming that member AB is in tension, i.e. a situation as in figure joint 
PB exerting the force PBA = P3 at B on AB. Hence by action and reaction law, we 
must have the member AB exerting a Force BAP′ equal to PBA, at B, P3 as shown in  
Figure 2.16(d). Similarly, the other members at B, viz. 1, 2, and 4 will exert 
forces P1, P2 and P4, away from B if the members are in tension and towards B if 
they are in compression. In addition to these forces on B, which are internal to the 
truss, an external force F may be acting on the truss at B. Evidently, the joint B 
will be in equilibrium under this concurrent force-system. In short, each joint of a 
truss becomes the centre of a concurrent force-system in equilibrium, which will 
have as many forces as the number of members meeting there, plus the external 
loads on the truss acting at the joint. 
Statically Determinate and Indeterminate Trusses 

The magnitudes of the forces in the members, their type and the reactions 
developed at the supports are unknown in a problem of truss analysis. If the 
number of the members is ‘m’ and of reactions is ‘r’, we have ‘(m + r)’ 
unknowns. Now for the equilibrium of each joint we have two equations  
(  and ). Thus, if the total number of joints in the truss is 
‘j’, we shall have ‘2j’ equations based on statics. If we assume that the truss 
is simply supported at ends, i.e. it has one hinged support and the other 
roller support, we have three unknown external reactive components, i.e.  
r = 3. The total number of unknowns therefore becomes (m + 3). Evidently, 
if 2j = (m + 3), we have as many equations as the number of unknowns and 
by solving them it will be possible to determine all the unknowns. For a 
simple truss, we have m = 2j − 3 from which 2j = (m + 3), i.e. such a truss 
satisfies the above condition of the solvability of a truss by statics. A truss 
in which the force in all the members can be determined by statical 
equations alone is said to be ‘statically determinate’. 

0=Σ xF 0=Σ yF

If in a certain truss m > (2j − 3), we have more members than those which 
can be analysed from the number of available statical equations, the truss is 
then said to be ‘statically indeterminate’ internally’ or ‘internally 
redundant’ because it has some bars in excess. On the other hand, if m < (2j 
− 3), we have too few unknowns, and then physically the number of bars is 
insufficient to keep the truss rigid and stable. The truss is then said to be 
‘Deficient’. Only when m = (2j − 3), we have a statically determinate; and 
merely satisfying the relation m = (2j − 3) is however not a sufficient 
condition in this behalf. 
The ‘2j’ equation corresponds to ‘j’ concurrent force-systems in 
equilibrium, which forces (corresponding to ‘m’ members) and also the 
forces external to the truss (including applied loads and reactions) which 
are separately in equilibrium. Hence the ‘2j’ equations will include the three 
fundamental equilibrium equations for the truss as a whole also. For the 
solution of a truss, however, it is common to use the latter three equations 
first, to evaluate the external reactions. If the reaction components at two 
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ends are more than three they cannot be determined by statical equations 
alone : we have an externally statically indeterminate truss. 

Applied Mechanics 

2.5.2 Method of Joints 
The diagram of any given truss can be converted into a diagram showing the 
corresponding concurrent force-systems in equilibrium, one at each of its joints, 
by erasing the middle portions of the lengths of all the members and marking 
arrows for the forces on the joints next to them, along the remaining portions of 
those lengths.  The senses of the arrows for any single member may be marked 
either towards or away from each other. We may show each of these arrows away 
from the particular joint to start with; this amounts to assuming that all the 
members are in tension. 

The statically determinate truss can be analysed by applying the equations of 
equilibrium  and 0=Σ xF 0=Σ yF  for all the forces at each joint, viz. the 
unknown ‘P’ values and any loads there. This is known as method of joint for 
truss analysis. Instead of setting up the equations for all the joints first and then 
solving them simultaneously, it is better to set them up for one joint, solve them, 
obtain the values of the unknown member-force there, then proceed to another 
joint, and continue the process till all the unknowns are obtained. In order that we 
obtain solvable equations in the beginning and also at every subsequence step, we 
must find a joint or joints where there are not more than two unknown forces 
which include forces in members and reactive elements. If we get the value of an 
unknown member-force with a negative sign, it only means that the member is in 
compression and not in tension. At the other end of the particular member, 
therefore, when we put down the equilibrium equations, we either reverse the 
sense of the force and take its magnitude as positive. It needs to be emphasised 
here that the arrows next to the joints as marked, show the force exerted by the 
members on the joints and not vice-versa. 

A common case of a member carrying zero force occurs when at a joint we have 
three members meeting, two of which are in the same straight line, the third at an 
inclination to them and there is no load there. By resolving all the forces at the 
joint in a direction normal to the first two we shall find that the force in the third 
is zero. All such members should be disregarded from the analysis merely on 
inspection. 

Example 2.8 

Analyse the truss with geometry, loading and supports as illustrated in 
Figure 2.17(a). 

 
 
 
 
 
 
 
 
 
 

 
Figure 2.17(a) 
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Equilibrium : Free 

Body DiagramSolution 

The members and joints are numbered as shown in Figure 2.17(b); and 
diagrams in Figure 2.17(c), represent the free body diagrams for each joint. 
Reactive elements at the hinge A are VA and HA, that at the roller support G 
is HG. 

 

 

 

 

 

 

 
(b)      (c) 

Figure 2.17 

The length of each of the inclined members is 5 m ( 543 22 =+=l ) and 
hence cos θ = sin φ = 0.8, sin θ = cos φ = 0.6, θ and φ being the inclinations 
of the diagonals with the vertical and horizontal respectively. 

A joint where the number of unknown forces is two or less is located. It is 
clear that D is the only joint where we have two unknowns S3 and S4. 

(i) Joint D 

0=Σ yF  gives 

  S3 cos θ − 12 = 0 

  kN15
8.0

12
3 +==S  

the positive sign shows that the sense of the arrow S3 at D is correct, 
i.e., member 3 is pulling D up and towards the left, i.e. it is in  
tension =15 kN. 

0=Σ xF  now gives 

,0cos 43 =+φ SS  

i.e.  (+ 15) 0.6 + S4 = 0.  .kN0.94 −=∴ S  

The negative sign shows that the sense of the arrow S4 at D is to be 
reversed; member 4 is actually pushing the joint D to the right and it 
itself is under compression.  We may reverse both S4 arrows to correct  
the situation, and take S4 = + 9.0 kN.  

Since S3 is now known, we notice that at joint C we have only two 
unknowns S2 and S11 and so we proceed to joint C. 

(ii) Joint C 

0=Σ xF  gives 

0cos 23 =−φ SS  

∴   ,kN96.0152 =×=S
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i.e. the member ‘2’ carries a tensile force = 9 kN. 

0=Σ yF  gives 

.0θcos 113 =+ SS  

∴  kN128.01511 −=×−=S  

i.e. the  member  ‘11’ carries a compressive force = 12 kN. 

With S11 and S4 known, at joint E we have only two unknowns S10  
and S5. 

Hence we turn to joint E. 

Applied Mechanics 

(iii) Joint E 

0=Σ yF  gives 

012θcos 1110 =−+ SS  

But   S11= −12 

∴  ,kN30
8.0

1212
10 =

++
=S  

i.e. member 10 carries 30 kN force in tension. 

0=Σ xF  gives 

.0cos 4105 =−φ+ SSS  

But 94 −=S  and 3010 +=S  

∴  ,kN276.03095 −=×−−=S  

i.e. member ‘5’ is in compression under 27 kN force. Now we go  
to B. 

(iv) Joint B 

0=Σ yF  gives 

  kN248.030θcos109 −=×−=−= SS  

0=Σ xF  gives 

  kN27918cos 2101 +=+=+φ= SSS  

i.e. member 9 carries 24 kN compression and member ‘1’, 27 kN 
tension. 

(v) Joint F 

0=Σ yF  gives 

2412θcos8 +=S  

∴  kN458 =S  tension. 

0=Σ xF  gives 

0cos 586 =−φ+ SSS  

  ,kN54276.0456 −=−×−=S  
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Equilibrium : Free 

Body Diagrami.e. member ‘8’ carries 45 kN tension and member ‘6’, 54 kN 
compression. 

(vi) Joint G 

0=Σ yF  gives  

kN127 +=S  

and  gives 0=Σ xF

,06 =+ SH G  i.e. ,kN54+=GH  

i.e., member 7 carries 12 kN tension and the reaction HG is 54 kN to 
the right as assumed. 

(vii) Joint A 

0=Σ yF  gives 

,0cos 78 =−θ− SSVA  

∴   .kN481236 +=+=AV

0=Σ xF  gives 

,0cos81 =φ++ SSH A  

∴  .06.04527 =×++AH  

∴  kN54−=AH  

negative sign shows that HA is to the left, and = 54.00 kN. 

The three fundamental equations can be applied to the entire truss 
now to check the values of VA, HA and HG. 

The result of the analysis is best given by a sketch of the truss as 
given in Figure 2.17(c). 

In Figure 2.17(c), the numbers indicate the magnitudes of the forces 
exerted by the member on the joints and “pairs of approaching 
arrows” on a member indicate that it is in tension and “pair of 
receding arrows” indicate compression. This may be indicated 
alternatively by giving the magnitude of the force a positive sign or  
T suffix for tension and negative sign or C suffix for compression. 

SAQ 4 
Analyse the warren truss shown in Figure 2.18. 

 
 
 
 
 
 
 
 

Figure 2.18 
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2.5.3 Method of Sections Applied Mechanics 

When analysing a truss by the method of joints, it is necessary that we proceed 
from joint to joint in a definite sequence which is determined by the progressive 
availability of joints where the number of unknown forces is two or less. Now if 
the force in a particular member only is required the labour of solving all the 
joints coming earlier in the analysis will have to be put in. The Method of 
Sections avoids this labour and yet enables one to attain the objective. It is 
achieved by cutting the structure such that only the member/members in which 
force is required to be obtained are cut, and then drawing the free body diagram 
of the cut portion of truss as explained in the following example.  

Example 2.9 

A pratt truss having a span 24 m is shown in Figure 2.19. Compute the 
forces in the members DE, marked 1, 2, and 3 (encircled) by the method of 
sections. Loads marked are in kN (ignore cuts in members as shown). 
Values of V and V1 are not a part of the data. 

 

 

 

 

 

 

 

 
Figure 2.19 

Solution 

From the geometry of the truss, 

    964.30
5
3tan 1 °==θ −  

and  .036.59°=φ∴  

Also each of the support reactions = half the load (by symmetry). 

∴ ↑=== kN35
2

70
1VVA ; and horizontal reaction, .0=AH  

Having worked out the end reactions, it will be possible to start the analysis 
by the method of joints either from A or from I. If we start from A, we will 
have to solve the joints A, P, B, O and C (in that order) first. Then we can 
solve joint N, which will give S3. Proceeding next to joint D, we shall get 
S1. Then solving joints E and M, we shall get S2. Obviously this will involve 
considerable time, effort and calculations. Rather than pursuing this 
laborious procedure, we adopt the method of sections as follows : 

We imagine that; (a) the truss is sawn off along XX into two portions 
severing members 1, DM and 3 completely and (b) at the same time the 
force pairs S1, SDM and S3 of the appropriate magnitude and sense (as 
developed in the uncut truss) are replaced so as to act along their cut 
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Equilibrium : Free 

Body Diagramlengths. [For the sake of understanding, these are all shown as tensile in the 
figure.] If any of them happens to be compressive, say S1, it will only mean 
that S1 has a negative sign. With this done, the force systems on the two cut 
portions of the truss-one left of XX and the other right of XX-remain 
exactly the same as they were before the cut was made and hence both the 
cut portions will remain in equilibrium. We now consider the equilibrium of 
the portion left of XX (Figure 2.19) which is subject to all the known 
external forces on that portion of the truss plus three other forces viz. S1, 
SDM and S3, which are internal to the truss and are unknown. The effect of 
sectionalising has been that the three internal forces in the truss have been, 
so to say, exposed. We can now apply the three fundamental equations of 
equilibrium to this portion, to obtain the above three unknown forces. Since 
we want S1, we take moments about M, the point of intersection of SDM  
and S3. 

0=Σ MM  gives (Figure 2.19). 

0310610910123551 =×−×−×−×+×S  

[SDM and S3 will not enter the equation as they pass through M.] 

S1 = − 48 kN, i.e. Bar 1 carries 48 kN compression 

and,  gives 0=Σ DM

.031061093553 =×+×+×−×S  

[SDM, S1 and the 10 kN force at N pass through D] 

∴ S3 = + 45 kN, i.e. member 3 carries a tensile force = 45 kN. 

For obtaining S2, we take section YY and consider the F. B. D. of the 
portion right of YY (Figure 2.19) which is in equilibrium under the action 
of V1, 10 kN loads at L, K, and J and the bar forces SEF, S2 and SML. 

Now, , we get 0=Σ yF

,0101010cos 12 =−+++θ VS  

i.e. kN831.5
cos

3035
2 +=

θ
−

=S  tension. 

All the above values can be checked by the method of joints. 

From the above example, the following points should be noted: 

(i) When a truss is in equilibrium, its every part is in equilibrium under 
the action of the forces external to that part. 

(ii) Since the conditions of equilibrium gives only three equations 
unknown forces (only if numbering 3 or less) are obtainable from 
them. 

(iii) For the successful application of the method of sections we should 
select such a cutting section that besides the member in which the 
force is desired, not more than two others are cut in which the forces 
are unknown, and sketch the complete F.B.D. of that portion. 

SAQ 5 
Calculate the forces in the member marked 1, 2 and 3 for the bow-string 
truss shown in Figure 2.20.  Loads are in kN. 
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Applied Mechanics  
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20 
 
 
 
 
 
 
 

2.6 SUMMARY 
In this unit, you have learnt to classify various types of supports and constraints, 
rollers, rockers, ball and socket joints, frictional surfaces, short links, cables, pins, 
hinges and the examples of support connections. These connections offer 
resistance to the movement of the bodies which are called reactions. Following 
tables give the various types of connections and their reactions. 

Table 2.2 

Sl. No. Types of Connections Reactions 

1 Cable A tension force (pull acting away from the 
member along the direction of the cable. 

2 Link A force acting along the axis of the link. 

3 Roller A force acting perpendicular to the surface at 
the point of contact. 

4 Rocker A force acting perpendicular to the surface at 
the point of contact. 

5 Smooth surface Same as roller. 

6 Pin or Hinge A force having two unknowns : magnitude and 
direction or two forces with unknown 
magnitudes in two mutually perpendicular 
known directions, i.e. HA and VA. 

7 Member 
fixed/connected to a 
collar on smooth rod 

A couple (moment) and the force acting 
perpendicular to the rod. 

8 Fixed support A couple (moment) and two unknowns for 
components. 
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Equilibrium : Free 

Body DiagramThe first step in solving equilibrium problems is to draw free-body diagram.  
Isolate the body from its surrounding. Replace the constraints by reactions. Show 
all forces acting on the member and apply the equations of static equilibrium. 

In the general case of a system of equilibrium, there are six equations of static 
equilibrium. These ensure that the resultant force and resultant moment both are 
zero. Hence, we write : 

(i)  0=Σ xF

(ii)  0=Σ yF

(iii)  0=Σ zF

(iv)  0=Σ xM

(v)  0=Σ yM

(vi)  0=Σ zM

where x, y and z are three mutually perpendicular axes. 

In particular, if the forces are parallel and we take z axis parallel to them, then the 
first, second and last equations are identically satisfied (no force exist along x and 
y axes). Therefore, the equations of static equilibrium are reduced to three, viz. 

0,0,0 =Σ=Σ=Σ yxz MMF  

If the forces are concurrent and if we choose the point of concurrence as the 
origin then the last three equations will always be satisfied and only three 
equations will be required to solve the problems. These are  

0,0,0 =Σ=Σ=Σ zyx FFF  

Similarly, in the case of concurrent forces in a plane there will be only two 
equations of static equilibrium : 

0=Σ xF  and  0=Σ yF

In case of parallel forces in a plane, these equations will be 

0=Σ zF  and  0=Σ yF

where 0 is the moment centre in the plane containing the parallel forces. 0 may be 
any point in the plane. The z axis will be parallel to the direction of forces. 

2.7 ANSWERS TO SAQs 
SAQ 1 

(a) Free body diagrams for member AB are as follows : 

 

 
 
 
 
 
 

(a) 
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(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)      (d) 

 

 

 

 

 

 

 

 
(e)      (f) 

Figure for Answer to SAQ 1 

(b) Answers may be verified from the preceding text. 

SAQ 2 

 

 
 
 
 
 
 
 
 
 

Figure for Answer to SAQ 2 
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Equilibrium : Free 

Body DiagramLet the reaction offered by the step on the wheel at the start of motion be R 
as shown in Figure for Answer to SAQ 2. 
The reaction offered by the ground has been taken as zero as the wheel is 
just on the point of moving over the step. 
Since the wheel is in equilibrium, therefore, 

0=Σ AM  

Taking moments about A, 
AC WOCPACP ×=α+α cossin  

800cossin =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α+α

AC
OCPP  

Since, sin 
2

1

6.0

3.0
===∠  

OA

OC
OAC

o30=∠∴ OAC  

Therefore, 
3

1o30tan ==
OA

OC
 

800
3

1cossin =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α+α PP  

  3800cossin3 ×=α+α PP  

  
α+α

=
cossin3

3800P  

For getting minimum value of force P, 
αd

dP  should be 0. 

Hence,  0
cossin3

3800
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

α+α
=

αd
d  

Then  0
]cossin3[

]sincos3[3800
2 =

α+α
α−α

−=
αd

dP  

or  0sincos3 =α−α  

   3tan =α  

   o1 603tan ==α −  

Now,  
α+α

=
cossin3

3800P  

For α = 60o, N3400=P  

The student may verify the answer by applying Lami’s Theorem. 
SAQ 3 

(a) 

 

 

 

 

 
 

 
Figure for Answer to SAQ 3(a) 
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Let vertical and horizontal reactions at A be RAV and RAH, 
respectively. MA is the total moment coming on the fixed end A of 
cantilever beam AB. Let us replace the uniformly distributed load of 
16 kN/m by a single force of 16 × 1.2 = 19.2 kN acting at a distance 

of m2.1
2
2.16.0 =⎟
⎠
⎞

⎜
⎝
⎛ +  from A. As the beam is at rest under the action 

of the forces, the condition of equilibrium can be applied to calculate 
RAV, RAH and MA. 

Applied Mechanics 

0=Σ xF  

∴   045cos28 o =−AHR

∴  kN8.19=AHR  

0=Σ yF  

∴   02.1945sin28 o =−−AVR

∴  kN39=AVR  

    22 )()( AVAHA RRR +=  

                    kN74.43)39()8.19( 22 =+=  

 7.19
8.19

39tan −=
−

==θ
AH

AV
R
R  (−ve sign used to indicate the angle 

w.r.t –ve x-axis in clockwise direction) 

∴   6.59452964.0563 oo or ′′′−′′′−=θ

Taking moments about A, we get 

0=Σ AM  

∴   6.045sin28)2.1()2.116( o ×+×+− AM

∴  m.kN92.3488.1104.23 =+=AM  

(b)  

 
 
 
 
 
 

Figure for Answer to SAQ 3(b) 

Let the reaction components at A be HA and VA as shown in figure. 
The reaction at B, i.e. RB will be acting vertically upwards. As the 
beam is in equilibrium, the condition of equilibrium can be applied. 
The moment of the couple acting at D can be calculated as  
20 × 1 = 20 kN-m acting in clockwise direction. The uniformly 
distributed load of 12 kN/m can be replaced by a single force  

12 × 2.5 = 30 kN acting at 

B

25.8
2
5.20.7 =+  m from A. 
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Equilibrium : Free 

Body DiagramThere is no horizontal force acting on the beam. Then, 

0=Σ xF  

∴   0=AH

Taking moments of all forces about A, we get 
0=Σ AM  

32 × 2 + 20 − RB × 7.0 + (12 × 2.5)  (8.25) = 0 B

or  050.2470.72064 =+−+ BR  

7
5.2472064 ++

=BR  

     kN36.47=

Note : Moments due to HA and VA about A are zero as they pass 
through point A. Clockwise moments have been taken as 
positive. 
0=Σ yF  

∴  03036.4732 =−+−AV  

∴   kN64.14=AV

Therefore, the reaction at A is 14.64 kN, whereas reaction at B is 
acting vertically upwards and has a magnitude of 47.36 kN. 

(c)  
 
 
 
 
 
 
 
 
 
 

Figure for Answer to SAQ 3(c) 

Let the vertical and horizontal reactions at A be RAV and RAH 
respectively.  MA is the total moment coming on the fixed end A of 
cantilever beam AB. Let us replace the triangular loading by a single 
force of 

kN4.142.124
2
1

=××  

acting at a distance of m4.0)2.1(
3
1

=  from A. 

As the beam is at rest, under the action of forces, the condition of 
equilibrium can be applied to calculate RAV, RAH and MA. 

0=Σ xF  

∴    0=AHR
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0=Σ yF  Applied Mechanics 

∴   02.124
2
1

=××−AVR  

∴   kN4.14=AVR  

Taking moments about A, we get 

0=Σ AM  

∴   04.02.124
2
1

=×××+− AM  

∴   76.5=AM  kN-m. 

Therefore, the reaction at A consists of a vertical force acting upwards 
with a magnitude of 14.4 kN and an anticlockwise moment of  
5.76 kN-m. 

(d)  
 
 
 
 
 
 
 
 
 
 

Figure for Answer to SAQ 3(d) 

There is an internal hinge at C from where the beam may be cut into two 
sections AC and CB as shown below : 

 

 

 
 
 

 
Part 1      Part 2 

Now, Part 1 and Part 2 can be analyzed separately to get RAV, RAH, MA and 
RB. B

Part 1 

This part now can be analyzed as cantilever beam with RC as a 
concentrated load at the free end. Here RC = 34 kN (it can be 
calculated easily) because moment about C is zero – see ahead also 
i.e., shear force at C = 20 × 1 + 40 – RB. B

Taking moment about A, 

0=Σ AM  



    

63

 
Equilibrium : Free 

Body Diagram∴  03345.1320 =×+××+− AM  

∴  mkN192 −=AM  

Now, taking moments about C, 

0=Σ CM  

∴  05.1601923 =×−−×AVR  

∴  kN94=AVR  

And, 0=Σ xF  

∴  0=AHR  

Therefore, the reaction at A consist of a vertical force acting upwards 
of the magnitude 94 kN and an anticlockwise moment of 192 kN-m 
whereas reaction at B is also acting vertically upwards and has a 
magnitude of 26 kN (i.e., 20 × 4 + 40 − RAV or 

2
11203405 ××+×=×BR , i.e. RB = 26 kN). B

Part 2 

This part can be analysed as simply supported beam. 

Taking moment about C, 

  
2
12014035 ××+×=×BR  

∴  .kN26
5

130
==BR  

0=Σ yF  

∴  02640201 =+−×−cR  

∴  . kN34=cR

SAQ 4 

First we draw the diagram of the truss showing all loads and  
reaction-components on it, and erase the middle portions of the lengths of 
all members. The concurrent force-system at all the joints can then be 
clearly exposed by drawing arrows next to each joint along every member 
there – all arrows away from the joints. Now looking for a joint where the 
number of unknown forces is two or less, we find that there is no such joint 
and the method seems to fail at the start itself. Here, therefore, calculation 
of the reactive components at the supports has to precede the application of 
the method of joints to the truss. 

 

 

 

 
 

 
Figure to Answer to SAQ 4 
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Considering now, the equilibrium of the truss, Applied Mechanics 

0=Σ xF  gives 

HA = 8 kN leftwards. 
0=Σ AM  gives 

0410815464.3812 =×−×−×−×EV  (∵ distance between BD 
and AE = 4 cos 30 = 3.464) 

∴  ↑= kN643.15EV

0=Σ EM  gives 

0810415464.3812 =×−×−×+×AV  

∴  ↑= kN357.9AV

Check : VA + VE = 25 kN = total downwards load. 
Now, we find that at both A and E we have not more than two unknown 
forces and we can start from either joint. 
(i) Joint A 

0=Σ yF  gives 

.030cos1 =+ AVS  

∴ 805.10
30cos

357.9
1 −=−=S  

∴    (compression) kN805.10

0=Σ xF  gives 

,060cos 71 =−+ AHSS  

i.e.  ,402.13
2
1805.1087 +=×+=S  

i.e.   (tension) kN402.13

(ii) Joint B 
Since S1 value is negative, the arrows for it must be reversed. In 
particular at Joint B, S1 actually acts upwards and to the right with 
lines of action of S8 and S2 lying at 60o and 120o, respectively to it. To 
sketch the closed triangle of forces at B, we draw S1 vector = 10.805 
units starting from ‘SP’ [Figure SAQ 4(c)] and two lines one at 60o to 
S1 through its tail and the other also at 60o through its head and 
complete the triangle. Obviously the triangle is equilateral, and 
magnitudes of S8 and S2 will both equal to that of S1. 
Starting with the sense of the vector S1, we mark arrows on S8 and S2 
so that they chase one another in the sense indicated by that of S1.  
From the marked arrows, we see that S8 is tensile and is 10.805 kN 
and S2 is compressive and of the same magnitude. Thus, arrows for S8 
in Figure SAQ 4(b) are alright but those for S2 must be reversed (or S2 
taken = − 10.805 with the same arrows). 

(iii) Joint G 
0=Σ yF  gives 
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Equilibrium : Free 

Body Diagram.01030cos30cos 89 =−+ SS  

 010866.0805.1030cos9 =−×+S  ∴

 S9 = + 0.742 kN, 

i.e. member 9 carries a force = 0.742 kN (tension). 

0=Σ xF  gives 

0S60cosS60cosSS 7896 =−−+  

i.e.  .0402.13
2
1805.10

2
1742.06 =−×−×+S  

∴  kN433.18433.186 =+=S  (tension) 

∴

(iv) Joint C 

0=Σ yF  gives 

.030cos30cos 910 =+ SS  

∴ ,742.0910 −=−= SS  

i.e.   (tension) kN402.13

0=Σ xF  gives 

0)805.10(60cos60cos 9103 =−−−+ SSS  

∴ kN063.10063.10
2
1742.0

2
1742.0805.103 =−=×+×+−=S (C) 

Having analysed half the truss from the left side it is advisable to 
analyse the remaining from the right side starting from E, so as to 
avoid the carrying forward of mistakes, if any, committed in the 
earlier calculations on the left half. 

(v) Joint E 

0=Σ yF  gives 

,030cos4 =+ EVS  

i.e.  064.18
30cos

643.15
4 −=−=S  

i.e.   (compression) kN064.18

0=Σ xF  gives 

,060cos45 =+ SS  

i.e.  ,0
2
1)064.18(5 =×−+S  

i.e.   is 9.032 kN (tension) 5S

(vi) Joint D 

0=Σ yF  gives 
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030cos30cos 411 =+ SS  Applied Mechanics 

∴ .0)064.18(11 =−+S  

∴ 064.1811 +=S  

i.e.    (tension) kN064.18

0=Σ xF  gives 

,0)60cos(860cos 4113 =−−+ SSS  

i.e.  .0
2
1)064.18(8

2
064.18

3 =×−−−+S  

∴ 064.103 −=S  kN 

∴  S3 =10.064 kN (compression) 

[tallies with the value of S3 in (iv) above – check 1]. 

(vii) Joint F 

0=Σ yF  gives 

01530cos30cos 1110 =−+ SS  

∴ 015866.0064.18866.010 =−×+×S  

742.010 −=S  kN 

i.e.  kN742.010 =S  (compression) 

[tallies with the value of S10 in (iv) above – check 2.] 

0=Σ xF  gives 

,060cos60cos 511106 =−−+ SSSS  

i.e.  0032.9
2
1064.18

2
1)742.0(6 =−×−×−+S  

  kN435.18435.186 =+=S  (tension) 

[tallies with the value of S6 in (iii) above – check 3.] 

The above three checks in the work-out may be noted. Since equilibrium of 
the entire truss involves three equations which have been included in the 
joint equations, we shall get only three checks as shown above, using all the 
2j equations of equilibrium of the j joints. 

The answer to the problem is presented in following figure. 

 

 

 

 

 
Figure for Answer to SAQ 4 
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Equilibrium : Free 

Body DiagramSAQ 5 

Considering the equilibrium of the whole truss, 0=Σ BM  gives, 

.04300820012300166002040024 =×−×−×−×−×−×AV  

   .kN1000 ↑=AV

Taking section XX and considering the Free-body diagram of the portion 
left of XX as shown in figure, the forces on it are VA = 1000 kN, loads of 
400 kN and 600 kN at H and D respectively (as given) and forces S1, S2 and 
S3 in bars 1, 2 and 3 respectively, all assumed tensile. 

 

 

 

 

 

 

 

 

 
Figure for Answer to SAQ 5 

(i) To get S1, we take , where F is the point of intersection of 
S

0=Σ FM
2 and S3 which although unknown by themselves have known 

moment about F, viz. zero. Also moment of S1 about F can be more 
easily worked out by summing the moments of its x and y components 
about F, rather than working out its moment-arm. Hence, 
     0460084001210004sin3.5cos 11 =×−×−×+×θ+×θ SS  

But 
4
7.0θtan = ; 

∴        θ = 9.9262 

∴  985.0θcos =  

and 172.0θsin =  

∴  N644172.03.5985.0 11 −=××+×× SS  

∴  .6400)688.0221.5(1 −=+S  

∴  ,kN10831 −=S  

i.e. member 1 is in compression of magnitude 1083 kN. 
(ii) To obtain S2 we take moments about G, the point of intersection of S1 

and S3. For computation of moment of S2 about G, we take it to act at 
F and sum the moments of its x and y components. 

Location of G is obtained by 
4
7.0θtan,tan also ==θ

GF
EF . 

∴  .m286.34
7.0
46
=

×
=GF  



 
 

 
68 

Applied Mechanics ∴  286.2212286.34 =−=AG  

0=Σ GM  gives 

0)286.30(600286.26400)286.22(1000)(cos2 =×+×+−φ GFS  

S2 cos φ (GF) – 22286 + 10514.4 + 18171.6 

or       S2 cos φ (GF) = − 64 N 

But  
3.5

4tan =φ = 0.7547; 

∴         φ = 37.0418o

∴  .798.0cos =φ  

This gives .6400286.34798.02 −=××S  

   kN8.2332 −=S  

which means that member 2 is in compression whose  
magnitude = 233.8kN. 

(iii) To obtain S3, we take 0=∑ CM  which gives 

08100044003.53 =×−×+×S  

from which, ,kN12083 =S  

i.e. member S3 is in tension and the force developed in it = 1208 kN. 
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Body Diagram 

 

 

 

 

2.5.4 Graphic Statics 
Problems of Statics-particularly those of coplanar force systems-can be easily and 
elegantly solved by the methods of Graphic Statics. If in a particular problem, 
such a solution can be obtained while the exact one as required by analysis 
mathematical is either not obtainable or is too time-consuming to arrive at for 
many engineering problems, methods of graphic statics using a reasonable degree 
of care is not only entirely acceptable but it also results in giving the engineer a 
good physical conception of the problem. 

Space Diagram, Bow’s Notation and Force Polygon 

The problem of finding the resultant of a force-system (co-planar) acting on 
a body is outlined in Figure 2.19(a). This figure is called the space diagram 
for the force-system and must be drawn to scale when the problem is to be 
solved graphically. 

 

 

 

 

 

 

 

 

 

 
Figure 2.19 

There are four forces in the system, viz, P1, P2, P3 and P4, acting at the 
points 1, 2, 3, and 4 respectively on a body [Figure 2.19(a)], whose resultant 
R is to be obtained. For designating the forces, graphic statics adopts a two 
letter notation for each force, called the Bow’s Notation which is based on 
the fact that the line of action of each force divides the plane in which it 
acts, into two ‘spaces’ one on each of its sides. According to this notation, 
we name these spaces in order, say from left to right by the capital letters of 
the alphabet A, B, C, D etc. for convenience and call each force by the 
name of the two spaces between which its line of action is situated, taken in 
that order. Thus, forces P1, P2, P3 and P4 will be called forces ‘AB’, ‘BC’, 
‘CD’, ‘DE’ respectively. Next draw to scale the force polygon ‘abcde’ for 
these forces as in Figure 2.19(b), naming the force-vectors by the 
corresponding small case letters, i.e. vector ab for force ‘AB’, vector bc, for 
force ‘BC’ and so on. This correspondence constitutes one of the 
advantages, afforded by adopting the Bow’s notation. Vector ae gives the 
resultant R in all respects except its location on the space diagram. 
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Applied Mechanics Select any point ‘O’ near the force polygon and join it to its vertices viz. a, 
b, c, d and e. The point ‘O’ is called the ‘Pole’ and the lines oa, ob, oc, od 
and oe radiating from it the ‘rays’. This part of the diagram is called the  
“polar diagram”. We draw a line IJ, in space A parallel to the ray ‘ao’ 
cutting the force ‘AB’ at a point J. We next draw through J, a line JK in 
space B, parallel to the ray ‘bo’ cutting the force BC in K and follow up by 
drawing the line KL through K in space C parallel to the ray ‘co’ cutting the 
force CD in L and another through L in space D parallel to the ray ‘do’ 
cutting the next force DE in M. Finally, we draw a line through M in space 
E parallel to ray ‘eo’. In brief, each of the steps on the construction involves 
drawing through the previously obtained point on the line of action of a 
force, a line in the next space parallel to the ray of the same name as that 
space, so as to cut the next force. The lines IJ, JK, KL, LM, and MN are 
called the ‘strings’ and the entire figure IJKLMN, the string polygon or the 
funicular polygon. We then produce the end-strings IJ and EM to meet at 
‘S’, which is a point on the line of action of the resultant ‘R’. 

The polar diagram should be looked upon as a device to split each of the 
given forces or force-vectors into two oblique components-one formed by 
the vector from the tail, i.e. the starting point of the particular force-vector 
to the pole and the second from the pole to the head, i.e. the end point of 
that force-vector, with these result that we have, force P1, i.e. the force AB 
represented by ab. 

= ao + ob (see arrows inside ∆ abo). 

Force P2, i.e. the force BC represented by bc 

= bo + oc (see arrows inside ∆ bco). 

Force P3, i.e. the force CD represented by cd 

= co + od (see arrows inside ∆ cdo) 

Force P4, i.e. the force DE represented by de 

= do + oe (See arrows inside ∆ deo). 

With the help of single pole O it can be concluded that  

(i) If the given force-system has ‘n’ forces, the polar diagram splits them 
into ‘2n’ vectors, which are all concurrent, and 

(ii) For any two adjacent force-vectors of the given system, the second 
component of the first on the polar diagram cancels the first 
components of the second, the two being equal and opposite, e.g. ob 
of ab and bo of bc, oc of bc and co of cd and so on. The pairs of 
components represented by each of the intermediate rays thus cancel 
out each other, with the result that eventually the first component of 
the first force, viz. ao and the second of the last one, viz. oe, are left 
uncancelled, whose resultant as is already known, is ‘R’ which is 
represented in magnitude, direction and sense by their vector  
– sum = ae. 

In the funicular polygon, each of its vertices can be considered as the 
point where the force of the given system, acts and where this force is 
considered to have been replaced by its two oblique components as given 
by those on the polar diagram, e.g. at J, forces a′o′ and o′b′ represented by 
vectors ao and ob respectively act in place of P1, similarly at K, forces 



    

71

 
Equilibrium : Free 

Body Diagramb′o′ and o′c′ represented by vectors bo and oc respectively, act in place of 
P2 and so on. Thus we now assume that the four forces P1, P2, P3 and P4 
no more act at P1, P2, P3 and P4 respectively but in their place, we have 
the system of eight forces, viz. a′o′ is the equivalent of the original system 
in all respects including locations. Out of these eight forces, it is easy to 
see that the force-pairs acting along each of the intermediate strings cancel 
out being equal, opposite and coincident, e.g. forces o′b′ and b′o′ along 
JK (each force being = | bo | in the polar diagram), o′c′ and c′o′ along KL 
(each being = | co | in the polar diagram) etc. Thus the system is seen to 
reduce to a statically equivalent one to only two forces viz., a′o′ and o′e′ 
(represented by vectors ao and oe respectively on the polar diagram), 
acting along the end strings, IJ and NM respectively. The intersection 
point of these two strings is therefore a point on the line of action of the 
resultant R. 

In essence, the funicular polygon construction reduces a given system of 
forces to a system of just two forces one acting on each of its end strings, 
which is equivalent in all respects to the original system. If the sense of 
each of these two forces is reversed, the two together, will represent the 
equilibrant of the system, and therefore, if we run a string along the 
profile of the funicular polygon, i.e. along IJKLMN  in this case, and 
apply a force o′a′ equal in magnitude to | oa | on the polar diagram, along 
JI  from J  to I and another e′o′ equal in magnitude to | eo | on the polar 
diagram, along MN from M to N, it will hole the P1, P2, P3, P4 system 
acting at points p1,  p2, p3 and p4 in equilibrium, with the string IJKLMN 
keeping to its shape. The tension in the string in its A and B portions will 
balance P1 at J, and those in B and C portions balancing P2 at K and so on. 
For this reason, the line IJKLMN is called the string polygon or funicular 
polygon. 

Briefly, therefore, it may be stated that in the case of a force-system, 
which is known to be in equilibrium, the force-polygon, as well as the 
funicular polygon must close-this fact is made use of in solving problems 
involving coplanar force-system in equilibrium. 

 

 

Table 2.1 : Properties of Force Polygon and Funicular Polygon 

Case 
No. 

System 
Reduces to 

Force Polygon Funnicular 
Polygon 

End Strings of the 
Funicular Polygon 

1 Single resultant 
force ‘R’ 

Open vector 
from ‘SP’ to 
‘EP’ gives ‘R’ 
in mag., 
direction and 
sense. 

Open has  
(n + 1) strings 

Their intersection gives 
a point on the line of 
action of ‘R’. 

2 Couple having 
moment = ‘M’ 

Closed ‘EP’ 
falls on ‘SP’. 
No resultant 
force 

Open has  
(n + 1) strings 

Parallel and distinct 
forces acting on these 
form the couple whose 
moment = M = 
magnitude of one of the 
force given by the 1st (or 
last) ray acting on the 1st 
(or last) end string × the 
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Applied Mechanics perpendicular distance, 
between the end strings. 

3 System is in 
Equilibrium 

Closed ‘EP’ 
falls on ‘SP’ 
indicates zero 
resultant force 

Closed has ‘n’ 
strings 

Coincident since the 
two forces to which the 
system is reduced and 
which act on the end 
strings neutralize each 
other. 

Note : ‘SP’ and ‘EP’ denote the starting point and the end point, respectively of 
the force polygon. 

Example 2.10 : Reactions of Simply Supported Beams 

A simply supported beam AB (span 12 m) has its end A hinged and is 
provided with a roller support whose surface is inclined at an angle of 20o to 
the horizontal, at the other end B. Figure 2.20, shows the beam and the loads-
10 kN at 60o to the horizontal, a u. d. (uniformly distributed load) with 
intensity 4 kN/m (3 m long), a 20 kN and another 8 kN load. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20 
Obtain the reaction RA and RB developed at the supports by the graphical 
method. 

B

Solution 

First replace the u. d. l. by its statically equivalent load = 4 × 3 = 12 kN 
placed at its mid-point. This is shown by the dotted vector [Figure 2.20(a)].  
In addition to the four forces, viz., the four point loads now, we have RA, the 
reaction at A passing through A, with direction not known, and RB, the 
reaction at B inclined at 20  to the vertical as shown. Marking the various 
spaces as shown, we have PQ, QR, RS and ST as the four known loads of 
10 kN, 12 kN, 20 kN and 8 kN, respectively. The reactions R

B

o

BB and RA will 
be denoted by TU and UP respectively. (Being a case of equilibrium, there 
will be as many spaces as there are forces, including reactions – six in this 
case). Coming to the force polygon, we can easily, draw the part force 
polygon pqrstu ′where tu′ is a line through ‘t’ parallel to the reaction RB. 
We cannot mark the point u corresponding to ‘U’ at this stage – in fact the 
problem is to locate the point u, so as to obtain the reactions R

B

BB and RA from 
the vectors tu and up. 
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Body DiagramIn spite of this incomplete  force-polygon, however, we find that we can 
draw the funicular polygon completely. Regarding it we recall that : 

(i) each of its vertices lies on the line of action of a force of the system 
and that 

(ii) it is closed in the case of equilibrium (as here). 

In the present problem, we know the locations of the lines of action of all 
the forces except RA, in respect of whose line of action, however, we know 
that it passes through A. Using this fact, we start drawing the funicular 
polygon from A and obtain the funicular polygon A-1-2-3-4-5. The 
complete funicular polygon whose last string A-5 with vertices lying on the 
two reactions can now be drawn on the polygon. It is therefore called the 
“closing line” of the funicular polygon and will be the line along which 
both of its end-strings must lie clearly in space ‘U’.  Hence, the 
corresponding ray ‘ou’ of the polar-diagram will be a line, through the pole 
O parallel to the closing line and this line for the ray ou can accordingly be 
drawn, [see dotted line in Figure 2.20(b)]. Since the point u lies on this ray 
and the line tu′, their intersection point must be u. This at once gives the 
two reactions represented by the vectors tu as RB and up as RB A. By scaling 
off, we find that RA = 26.2kN inclined at 100  to the vertical and Ro

BB = 24 kN 
has an inclination as marked. This solution can be checked by the analytical 
method, and would be found to be reasonably accurate. 

Example 2.11 

A warren truss made up of equilateral triangles, each side 3 m, is shown in 
the Figure 2.21. On the top boom there are 2 vertical loads 6 kN and 12 kN 
and a horizontal load of 4 kN. On the bottom boom, there is a load of 8 kN 
inclined at 200 to the vertical and another 6 kN which is vertical. The 
support A is hinged while B is a roller support. 

Determine the reactions graphically. 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.21 
Solution 

The two loads of 8 kN and 6 kN acting on the lower boom, whose line of 
action are seen to lie in between the two supports are shifted to the upper 
boom as shown in the Figure 2.21(a) by show the dotted lines. Having 
named the spaces now, we find that the loads are : PQ, QR, RS, ST, TU and 
the reactions are UV and VP. We now draw the part-force polygon pqrstu 
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Applied Mechanics and the line uv parallel to known direction of RB. The problem now reduces 
to locating the point v on uv′ so that uv will represent R

B

BB and vp, RA. 

 

 

 

 

 

 

 

 

 

 
Figure 2.22 

Proceeding exactly as in the previous example; choosing a pole O we 
complete the polar diagram. Then starting from the hinge A (this is 
mandatory) on the space diagram which is the only known point on RA, we 
complete the funicular polygon A-1-2-3-4-5-6 and obtain the closing  
line A-6. A line through the pole O, parallel to the closing line cuts uv′ at 
the point v which gives the vectors uv and vp representing RB and RB A 
respectively. By scaling off these, we find that RA = 18.3 kN inclined at 22  
to the vertical and R

0

BB = 14.7 kN vertical, an acceptably accurate solution. 

2.5.5 Maxwell Diagram or Stress Diagram for Trusses 
Drawing of a Maxwell Diagram (also called ‘Stress Diagram’) for a truss under a 
given loading is a fast method of obtaining the forces in its members. It is 
primarily based on the fact that every joint in a truss, is in equilibrium under the 
action of the system of coplanar concurrent forces meeting there. These forces 
consist of the applied loads if any at the joint and the axial forces developed in the 
members or bars which meet there. In fact by following this method and drawing 
a separate. Closed. The Maxwell diagram for a truss is however one single 
diagram which combines the force-polygons at all of its joints and in which the 
vector for any bar-force is drawn just once. Furthermore, as the external forces on 
the truss (such as loads and support-reactions) also act at the joints, the vectors 
for them, must appear in this single diagram and because they constitute 
independent force-system in equilibrium, this fact provides a check on the 
diagram of graphical construction of the Maxwell diagram. 

Consider a Warren truss shown in Figure 2.22. The truss consists of three equal 
equilateral triangle shaped panels joined by two horizontal bars at the top boom 
and is hinged at the joint L0 and supported by a roller at L3. It carries vertical 
loads of 4 kN each at the joints U0, U1 and U2 and 12 kN and 6 kN at L1 and L2 
respectively. There is also a horizontal load of 6 kN at U2. It is required to obtain 
the forces in the various members by the Maxwell diagram construction. 

Example 2.12 

Consider a Warran truss as shown in Figure 2.22. Carrying in loads as 
shown. 
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Body DiagramSolution  

To start first compute the reactions at supports L0 and L3 either graphically 
or analytically. These will be VL0 = 14.3 kN . ↑

HLo = 6.0 kN     and V← L3 = 15.7 kN ↑ . 

Then the spaces between external loads including reactions are then 
identified using Bow’s notations by letters A, B, C, . . . The internal space 
between members are then also identified similarly by letters J, K, L, . . . 
etc. to indicate member force vectors. For example force in member Uo V1 
(i.e. internal force SUo V1 is denoted by B. K at Uo (vector bk) equal at 
opposite internal force at U1 i.e. U1 U0 is also denoted by K B (vector kb)  
(Figure 2.22(c)). 

Now the Maxwell diagram proper is drawn, first by drawing to scale the 
complete closed external force diagram abcdefghta (Figure 2.22(d)). The 
closed force polygons for various joints are then drawn proceeding from 
one joint to another. It can be noted that only joints Lo and L3 represent 
joints which do not have more than two unknown member forces. Any one 
of them is selected as starting point. Vector aJ is drawn on force polygon 
parallel to Lo U1 and vector hJ parallel to Lo L1 intersecting at J. aJ and hJ 
represent forces in LoU1 and LoL1 respectively and can be measured to 
scale. Force polygon i a j h i represent closed force polygon with arrows 
indicating the direction of forces acting at Lo. 

Next we may move to joint Uo and proceeding in the same way, trace  
abbk-kj-JA to complete force polygon at U1 with arrows as marked to get 
point k on the Maxwell diagram. The process in continued till all remaining 
points e.g. LM and N are located on Maxwell diagram. 
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