
UNIT 2 

Structure 

2.1 Introduction 
Objectives 

2.2 Electromagnetic Waves at the Interface Separating Two Media 
Normal Incidence 
Oblique Incidence 

2.3 Idealization of Waves as Light Rays 

2.4 Fermat7s Principle 

2.5 Summary 

2.6 Terminal Questions 

2.7 Solutions and Answers 

2.1 INTRODUCTION 

In the previous unit you have learnt that light is an electronlagnetic wave. It is made 
up of mutually supporting electric and magnetic fields, which vary continuously in 
space and time. An interesting question related to e.m. waves is: What happens to 
these fields when such a wave is incident on the boundary separating two optically 
different media? From Unit 7 of PHE-02 Course you may recall that when a wave 
passes from air to water or air to glass, we get a reflected wave and a refracted 
wave. Reflection of light from a silvered surface, a looking mirror say, is the most 
common optical effect. Reflection of e.m, waves governs the working of a radar. 
Reflection of radiowaves by the ionosphere makes signal transmission possible and 
is so crucial in the area of communication. 

In your earlier school years you have learnt that refraction explains the working of 
lenses and is responsible for seeing; our contact with surroundings. Even the grand 
spectacle of sun-set or a rainbow can be explained in terms of refraction 01 light. 
Refraction of e. m. waves forms the basis of one of the greatest technological 
applications in signal transmission. In fact, electro-optics has seen tremendous 
growth via optical fibres for a variety of applications. 

In Unit 7 of PHE-02 course on Oscillations and Waves, you learnt to explain 
rellection and refraction of waves on the basis of Huygens' wave model. Now the 
question arises: Can we extend this analysis to electromagnetic waves, which include 
visible light, radiowaves, microwaves and X-rays? In Sec. 2.2 you will learn to derive 
the equations for reflected and transmitted fields (E and B) when an e.m. wave is 
incident normally as well as obliquely on the boundary of two media. 

You are aware that many physical systems behave according to optimisation 
principle. In PHE-06 course you have learnt that-when several fluids'at different 
temperatures are mixed, the heat exchange takes place so that the total entropy of 
the system is maximum. A ball rolling on an undulating surface comes to rest at the 
lowest point. The profoundness of such situations and scientific laws governing 
them led Fermat to speculate: Does light also obey some optimization principle? 
And he concluqed: Ray of light chooses u path of extremum between two points. 
This is known as Fermat's principle, Implicit in it are the assumptions 

(i) Light travels at a finite speed, and 

(ii) The speed of light is lower in a denser medium. 

In Sec. 2.4 you will learn about Fermat's principle. We have shown that all laws of 
geometrical optics are contained in it. 



0 bjec tives 

After studying this unit you should be able to 

0 explain reflection and refraction of e.tn. waves incident normally and 
obliquely on the interface separating two optically different media 

apply Fermat's principle to explain the reflcction and refraction of light, 
and 

solve problems based on retlection and refraction of e.m. waves. 

2.2 ELECTROMAGNETIC WAVES AT THE 
INTERFACE SEPARATING TWO MEDIA 

Consider a plane electroinagnetic wavc that is incident on a boundary between two 
linear media. That is, D and H are proportional to E and B, respectively, and the 
constants oT proportionality :Ire indcpendcnt of position and direction. You can 
visualise it as light passing li-om air (medium 1) to glass (medium 2). Let us assume 
that there are no free charges or currents in the materials. 

Fig. 2.1 shows a planc houndary betwccn two media having different permittivity 

Refleclion and Iterrnction ol' 
Light 

PIg.2.1: A nnifvnn pliinc wave Is incldenl no~l:l:rlly on i1 pli~ne boundury. The ~*ellccled and 
refmckd (lr?l~:snlittcd) wirvcs rrre allso sllown. 'l'hc nnglc of incidence Is a and rrnglc of 
refraction Is p. 

Medium 1 e ,  p, 

and permeability: E I ,  lor medium 1 and EZ, 11.2 h r  ll~ediuln 2. A unil'orm plane 
wave travelling to the right in mcdiulli 1 is incident on the interface normal to the 
boundary. A s  in the casc of waves on ;I string, we expect a reflected wave 
propagating back into thc rncdium and a transmitted (or relractcd) wavc travelling 
in the second medium, Wc wish (i) to derive expressions Cor thc fields associatcd 
with reflcctcd and rclriictcd wavcs in terms ol lhc rield associatcd with the incident 
wave and (ii) know thc liaction of the incidcnt energy that is reflected and 
transmitted. To  do so wc ncetl to know thc I)oundat-y conditions satisfied by these 
waves at the interlace separatjng the two mcdia. We obtain lhcse conditions by 

Medium 2 E, p2 
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Rg.2.2: A dnusoldnl plane 
c.m. wave Incident normally at 
~ t ~ c  boundary of two optlcally 
transparent media 

stipulating that Maxwell's equalions must be satisfied at the boundary between 
these media. We first state the appropriate conditions. Their proof is given in the 
appendix to this Unit. 

Boundary Conditions 

You learnt to derive the boundary conditions from Maxwell's equations for a 
medium free of charges and currents in Unit 15 of the PHE-07 course on electric 
and magnetic phenomena. For your convenience, we rewrite appropriate integral 
form of these equations: 

and 

(2. la) 

(2.lb) 

(2. lc) 

(2. ld) 

where S is a surface bound by the closed loop C. 

The electric field can oscillate either parallel or normal to the plane of incidence. 
The magnetic field B will then be normal or parallel to the plane of incidence. We 
will denote these with subscripts I1 (parallel) and I (normal). The boundary 
conditions for normal and parallel components of electric and magnetic fields take 
the form (Appendix A). 

E ~ E ~ ~ -  & ? E 2 ~  = 0 (2.2~1) 

and 

We shall now use the boundary conditions expressed by Eqs. (2.221- d) to study 
reflection and refraction (transmission) at normal as well as oblique incidence. 

2.2.1 Normal InciJence 

Refer to Fig. 2.2. The yz-plakie (x = 0) forms the interlace of two optically 
transparent (non-absorbing) media (refractive indices nl and n2).  A sinusoidal plane 
wave of frequency o travelling in x-direction is incident from the left. From Unit 7 
of the Oscillations and Waves course you will recall that progressive waves are 
partially reflected and partially refracted.at the boundary separating two physically 
different media. However, the cnergy of the reflected or transmitted e.m. waves 
depends upon their refractive indices. 



The appropriate magnetic fields to be associated with electric fields are obtained Reflection and Rehction of 
from the equation Light 

k t  us suppose that the electric field is along the y-direction. Then the electric and 
magnetic fields associated with the incident wave are given by 

E I ( x , t )  = ~ o ~ f e x ~  [ i ( k I x -  w t ) ]  (2.3a) 

and 

Eor A B I ( x , t )  = - k exp [ i ( k ~ x -  w t ) ]  (2.3b) 
v1 

The reflected wave propagates back into the first medium and can be represented by 
the following fields: 

A 

E R ( x , t )  m EoRj exp [ -  i (k Ix+  a t ) ]  (2.4a) 

and 

EOR B R ( x , t )  - - -k exp [ -  i (k lx+  o t ) ]  (2.4b) 
Vl  

The minus sign in, the exponents in Eqs. (2.4a,b) indicates that propagation of the 
wave is in the -x direction. But the negative sign with the amplitude in Eq. (2.4b) 
arises because of transverse nature of e.m. waves and that the electric and magnetic 
field vectors should obey the relation 

where 4 is unit vector along the direction of incidence. 

If you visualise Eqs. (2.3) and (2.4) diagramatically, you will note that the electric 
vectors have been kept fixed ih the same direction but the magnetic field vectors 
have been oriented. The orientation of the magnetic field vector ensures that the 
flow of energy is always along the direction of propagation of the wave (Poynting 
theorem). 

The electric and magnetic fields of the transmitted wave, which travels to the right 
in medium 2, are given by 

E T ( x , ~ )  ~ o ? ' . f e x ~  [ i ( q t +  k ~ x ) ]  (2.5a) 

and 

The phenomenon of reflection and refraction is usually analysed in two parts: 

(i) To determine the relations between the field vectors of the reflected and 
refracted waves in terms of that of the incident wave. These relations 
determine the reflection and the transmission coefficients. In this derivation, 
we match the E and B fields in the two media at the interface with the help of 
appropriate boundary conditions there. 

(ii) To establish relations between the angle of incidence and the angles of 
reflection and refraction we may emphasize that so far as the laws of reflection 
and refraction are concerned, explicit use of any boundary condition is not 
required. 



Fresnel's Amplitude Relations 
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T o  derive expressions for the amplitudes of the reflected and the refracted waves in 
terms of the amplitude of the incident wave, we apply boundary conditions given by 
Eq. (2.2a-d) at every point on the interface at all times. At x = 0, the combined 
field to the left (EI + ER and BI and BH) must joill the fields to thc right (ET and BT). 
For normal incidence, there are no norn~al field components (perpendicular to thc 
interface). But why? This is because neither E nor B field is in the x-direction. This 
means that Eqs. (2.2a,b) are trivial and only tangential components of the electric 
and magnetic fields should be matched at the plane x = 0. Thus 

and 

which, on simplification yields 

Eol - Eon = 

where 

Solving Eqs. (2.6a) and (2.6b) for toe reflected and transmitted electric field 
amplitudes in terms of the incident amplitude, you will find that 

and 

For most optical mcdia, the permeabilities are close to their values in vacuum 
v1 

( pi p? ~ l g  ). In such cases a = -and we have 
V7 

and 

This suggests that when Q z vl, the reflected wave will be in phase with thc 
incidenl wave and for ~ 3 ,  < vi, the reflected and incident waves will be out of phase. 
This is illustrated in Fig. 2.3. 



Reflection and Kcl'ruction ol 
Light 

Fig.2.3: The phase relationship between rcflcctcd wave and the incident wave 

In ~erms of the index of refraction n ( = :), we can rewrite Eq. (2.8) as 

and 

2n1 
EoT = -.- 

ill f n3 
E0l 

When an e.m. wave passes from a rarer medium to a denser medium (nl < 112), the 
EOR ratio w i l l  be negative. Physically, it mcans that the reflected wave is 180' out 
Eor 

of phase with the incident wave. You have already learnt it in case of reflection of 
sound waves in the course on Oscillations and Waves. When an e.m. wave is 
incident from a denser medium on the interface separating il from iI rarer medium 

EOR (111 > az), the ratio - is positive and no such phase changc occurs. 
EOI 

We can now easily calculatt: the reflection and the transmission coetlicients, 
which respectively measure the fraction of incident energy that is reflected and 
tran>mitted. The first step in this calculation is to recall that 

where I* IT and II respectively denote th6 reflected, transmit~ed and incident wave 
intensity. Intensity is defined as the average power per unit area, (112) v E'. So you 
can readily show that 

and 



You can convince yourself that R +T = 1. For air (nl = 1) - glass (nz = 1,5) 
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interface, the R and Tcoefficients have the values R = 0.04 and T = 0.96. There is 
no energy stored (or absorbed) at the interface and you can now realise why most of 
the light is transmitted. 

We will now repeat this exercise for the case of oblique incidence. 

2.2.2 ObIique Incidence 

Refer to Fig. 2.4. A plane electromagnetic wave is incident at an angle 81. Let the 
angles of reflection and refraction be OR and OT. We can represent the fields 
associated with these three plane electromagnetic waves as 

1 Incident Wave 

EI = Eor exp [ -  i ( w I t -  k I . r ) ]  

Reflected Wave 

ER = EOR exp [ -  i ( w R t -  k R . r ) ]  

1 A 
B R =  - ( k R x  E R )  

v1 

Transmitted Wave 

ET= EOT exp [ -  i (wTt . -  k T . r ) ]  

(2.1 la) 

You may recall that the boundary conditions must hold at every point on the 
interface at all times. If the boundary conditions hold at a point and at sometime, 
they will hold at all points in space for all subsequent times only if the exponential 
parts in above expressions for each wave are the same, i.e. 

at the interface. This implies that: for equality of phases at all times we must have 

o~ = OR= w ( s a y )  (2.12a) 

That is, the frequency of an e.m. wave does not change when it undergoes reflection 
and refraction: all waves have the same frequency. Since the fields must satisfy 
Maxwell's equations, we must have for the wave vectors 



rurmer, ler a, K I ~  anu K1.z represent mex, y ana z components ol' kr. We can use Reflection and Rcli-action ol' 
.similar notation for k~ and k ~ .  For the continuity conditions to be satisfied at all Light 

points on the interface, we must have 

Flg,2.4: The rcflectlon of a plane wove wltll its el~rtric vector parnllcl to the planc ollncidcncc 

1 Let us choose the y-axis such that 

kIy = 0 

' (i.e. we assume k~ to lie in the x-z plane - see Fig. 2.4). Consequenlly 

kTy = kRy = 0 (2.14~) 

This result implies that the vectors kr, and kR will lie in the same plane. 

Further, from Eq. (2.14b) we get 

kl sineI - kT sineT = kR sineR (2.15) 

sin& 1 k1 ( - / kR 1 (see Eq. 2.13a and c), we must have 

91 OR 

That is, the angle of incidence is equal to the angle of reflection, which is the law of 
reflection. Further, 

sin01 kr w- -- - - 
sin OT kr = 

"'"e,_m 
sin OT E I  PI 

If we denote the speeds of propagation of the waves in media 1 and 2 by 

we find thal Eq. (2.17) can be rewritten as 
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sin 81 vl n2 
-= -- - -  
sin €IT v2 nl 

C 
where nl = - c d z a n d  m =  C =  c-. 

v1 v2 

represent the refractive indices of media 1 and 2 respectively. Do you recognise 
~ q :  (2.18)? It is the well known Snell's law. 

Eqs. (2.16) and (2.18) constitute the laws of reflection and refraction in optics. 

You can now derive Fresnel's amplitude relations following the procedure outlined 
for the case of normal incidence. For brevity, we just quote the results without 
going into details. (You will not be examined for the same in the term-end 
examination.) When E oscillates parallel to the plane of incidence, we have 

Eztl - -  2 cos 81 sin eT - 
Ed1 ~ i n ( 8 ~ + 0 ~ ) ~ 0 ~ ( 8 1 - 8 ~ )  

when E oscillates norms1 to the plane of incidence, we have 

ETI sin ( 01 - OT) , 
- = -  
EIL sin ( 81 + @T ) 

ETl 2 sin €IT cos 01 
-= 
Ell sin ( 81 + €IT ) 

You can easily verify that for normal incidence these equations reduce to Eq.,(2.Y). 

The corresponding expressions for reflections and transmission coefficients for 
normal and parallel oscillations of E when a plane wave is incident obliquely are 

and 

sin 281 sin 2eT 

'I = sin2 ( 01 + e T )  cos2 ( 4 - e T )  

sin2 ( 81 - eT ) 
R1 = 

sin" 01 + eT ) 

sin 281 sin 20T 
TI = - 

sin2 ( 81 t OT ) 

As before, you can easily show that for normal incidence these equations reduce to 
Eq. (2.10a, b). 



IDEALIZATION OF Reflection and Refraction of 
Light 

So far you have learnt to explain reflection and refraction of plane electromagnetic 
waves at a plane interface. This signifies a relatively simple situation where the 
solutions of Maxwell's equations give the laws of propagation of light. It is not true 
in general and we invariably seek approximations to describe a phenomenon well. 
One such approximation makes use of smallness of wavelength of light. You know 
that the wavelength of light is very small ( -10-7m). It is orders of magnitude less 

Fig.2.5: Ray representation ofn plane, diverging spherical and converging 
sphcrlcnl wavefronts moving from left to right 

than the dimensions of optical instruments such as telescopes and microscopes. In 
such cases, the passage of light is most easily shown by geometrical rays, A ray is 
the path of propagation of energy in the zero wavelength limit ( A - 0 ). The way 
in which rays may represent the propagation of wavefronts lor sonic familiar 
situations is shown in Fig. 2.5. You will note that a plane wavefront corresponds to 
parallel rays and spherical wavefronts correspond to rays diverging from a point or 
converging to a point. You will agree that all parts of the wavefront take the same 
time to travel froin the source. 

The laws of geoinetrical optics are incorporated in Fermat's principle. We will now 
discuss it in detail. 

2.4 FERMAT' S PRINCIPLE 

Huygens proposed that light 
propagates as a wavefront (a 
surface of constant phase) 
progressein a medium 
perpendicular to itself wit11 the . 
speed of light. The zero 
wavelength approximation of 
wave optics is known as 
geometl.icd optlcs. 

In its original form, Fennat's principle may be stated as follows; 

Any light ray travels between two end points along a line requiring the 
minimirm transit time. 

If v is the speed of light at a given point in a inediutn, the time takcn to cover the 
distance dl is 

In your earlier years you have learnt that the refractive index of a medium is deEiied 
as the ratio of the speed ol' light in vacuum to its speed in the medium, i.e. 

Using this relation in Eq. (2.22), we get 
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Hence, the time taken by light in covering the distance from pointA to B is 

The quantity 

has the dimensions of length and is called the optical distance or optical path 
length between two given points. You must realise that optical distance is dilferent 

from the physical (geometrical) distance ( = dl ). However, in a homogeneous I 
n~cdium, the optical disbince is equal to the product of the geometrical length and 
the rcrractivc indcx of Lhc medium. Thus, we can write 

This is Fcr~nilt's principle oT Icilst time. k t  us pilusc for :I moment i~nd ask: Is there 
any exception to this Ii~w? Yes, thcrc ilrc CiIScS where the opticrll path corresponds 
lo mi~ximum Lime or it is ncithcr il mi~ximum nor il minimum, i.e. sl;.~tion;~ry. To 
incorporittc such sil~i~tions, this principlc is modified ;IS lollows: 

\J 

Out ol' many paths connecting two given points, the light ray follows that path 
\. ' 

\. ! for which the lime required is un extremum. In other words, the opticill path 
\?, . / length between any two points is a I I I ~ I X ~ ~ I ~ I ~ I ,  minimom, or stationary. 

?~-F----*-,P, * h f  

Tllc csscntiill point involvccl in  Fcrmi~l's principlc is t h i ~ t  slight verii~tion in the 
i ~ c t ~ i ~ l  pi~th ciruscs 21 second-order vi~ri;~tion in the iicLui11 path. Lct us consider t h i ~ t  

Fig. 2.6 light propagi~tcs liom pointA in tllc nlccliurn chi~ri~ctcrisctl hy thc rcfrilctivc indcx tl 
to Lhc point B as shown in Fig. 2.0. According to th i s  principle, 

'or a homogeneous mcdium, the r;lys arc stri~ight lines, sincc the shorlcsl oplia~l 
path between two points is i~long a slraight line. 

tl In effect, Fermat's principle prohibik thc considcration oC :In isoli~tcd rily ol'alight. 
I t  tells us that a path is real only when we extend our examination to the paths in  
immediate neighbourhood of the rays. To understand Lhe meaning oC this 
statement, Icl us consider the case of finding the path of a ray from a pointA to a 
point B when both of them lie on the same side of n mirror M (Fig. 2.7). 11 can bc 

' , 
L ,/ , seen that the ray can go directly fromA to B without sufl'cring ;my reflection. 
..I 

Alternatively, it can go along the path APB alter suffering a single reflection from 
I the mirror. lf Fermat's principIe had asked for, say, an absolute minimum, then the 

path APB would be prohibited; but that is not the actual case. The path APB is illso 
Fig. 2.7 : nelluction st minimum in the neighbourhood involving paths likeAQB. The phrasd "immediale 
@dnc interli~cc neighbourhood of path" would mcan those paths that lie near the path under 



consideration and are similar to it. For example, the path AQB lies near APB and is 
similar to it; along both paths the ray suffers one reflection at the mirror. Thus 
Fermat's principle requires an extremum in the immediate neighbourhood of the 
actual path, and in general, there may be more than one ray path connecting two 
points. 

All the laws of geometrical optics are incorporated in Fermat's principle. We now 
illustrate Fermat's principle by applying it to reflection of light. 

Example 1 

Using Fermat's principle, derive the laws of reflection. 

Solution 

Let us first consider the case of reflection. Refer to Fig. 2.8. Light from a pointA is 
reflected at a mirror MM towards a point B. A ray APB connectsA and B. 81 and 8~ 
are the angles of incidence and reflection, respectively. We have denoted the 
vertical distances o fA and B from the mirror MM by a and 6. From the construction 
in Fig. 2.8 and Pythagoras' theorem, we find that thc total path length I of this ray 
from A to MM to B is 

I 

wherd x is the distance bctween the foot of the perpendicular from A and the point P 
at which the ray touches the mirror. 

According to Fermat's principle, P will havc a position such that the time of travel 
of the light must be a minimum (a n~aximum or stationary), Expressed in another 
way, the total length I of the ray must be a minimum or maximum or stationary, In 
other words, for Fermat's principle to hold, the derivativc of I with respect to x must 
be zero, i.e. dlldx = 0. Hence, on differentiating Eq. (2.25) with respect ton, we get 

-112 
- l ( 0 2 +  2)""(h)+ hZ+ ( d -  x ) ~ ]  Y 2 ( d -  x ) ( - 1 ) =  0 
dn. 2 

which can be rewritten as 

By examining Fig. (2.8) you will not: that this gives 

sin Of - sin €IR 

which is (part of) thc law of rellcction. You will also note that the incident ray, tlic 
rrllcctcd ray and thc normal to MM lie in the same incidcncc plime. 

In thc ahovc examplc time rccluired or thc optical palh lcngth can bc sccn to bc 
minimum hy calculating the sccond deviative and finding its value at s lor which 
dlldx = 0. Thc 2nd derivativc turns out to bc positive, showing it to be minimum. 
You can convince, yourself by carrying out this simple caculation. 

Reflection nnd Refraction of 
Light 

e x-  
d -% 

-'"I lncidcnl rny 

Plnnc or 
incidcncc 

. 

Fig. 2.8 Derivation of thc laws of 
reflection using Fermat's principle. 

We now summarise what you have learnt in this unit. 
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r When an e.m. \s'ave is incident normally an the interface separating t\vo 
optically different media. the reflected and transmitted electric field 
amplitudes are @\.en b!. 

and 

where a = \/ p1 11, E, and EL, is amplitude of incident elt'itrii t'izld. 

e The frequency o f  an e.ni. 1vai.e is not affected \+.hen i t  undergoes rztlc.crii~:. 
or refraction. 

e Fermat's principle states that a ray of light travels beh+.een n+.o $;\.en 
points along that path for which the time required is ,m estremum: 

2.6 TERMINAL QUESTIONS 

1. Derive Snell's law Lion1 Fer~nat's principle. 

2. A collimated beam is incident parallel to the axis of a concavc mirror. I t  is 
reflected into a converging beam. Using Fer~nat's principle shoiil that the 
mirror is parabolic. 

2.7 SOLUTIONS AND ANSWERS 

1. To prove the law of refraction from Fermat's principle, consider Fig. 2.9, 
which shows that the pointsA and B are in two optically different media. (If 
the refractive index on both sides of the boundary SS were the same, the path 
fromA to B would be a straight line, irrespective oT thc magnitude of the 
refractive index. But the refractive indices are not the same and the ray APB is 
not a straight line.) Suppose that the velocities of light on the two gides of the 
boundary are v, and v,. Since v = 1 I t ,  the time light takes to traverse the paths 
AP and P B  is 

Using the relation 12 - .: / v, this can be rewritten as 

where 1 (= rt, I ,  + 11;  I,) is the optical path length of the ray. The geometrical 
path in this casc is 1, + I,. If A is the waveIength of light in vacuum and A,, in a 
medium of refractive index it, then A = n A,. This shows that the optical path 
length is equal Lo thc length that the same number of waves would have if the 
medium were a vacuum. 



Reflection nnd Reli-action ol' 
Liglit 

Fig.2.9: A ray TronlA passes to B efter ~rf~xction all' 

Fermatas principle requires that dl / dx = 0 for some values ofx. The optical 
path length 

I  = Il t11 + I2 nz 

= t t ~ f l x ?  + t ~ l / I ? +  ( d -  x)= (ii) 
dl x d -  x  

so that - - 0 1/2 - 
a + x  ( b 2 +  ( d -  x ) ~ )  

x d -  x 
or 1z2 I,, = 1 5  1/2 

( a 2  + x2) [ h 2 +  ( d -  r12\ 

(iii) 

As before, we can write it in ter~ns of the angles of incidence and refraction as 
121 sin 8, = nz sin @I 

which is Snell's liiw of refrucliat~. It shows thnl when light passes from a 
medium of lower refractive index (rarer rncdiurn) to a medium of higher refrac- 
tive index (denser medium), it bends towards the surl':~cl: normal. 

Fig. 2.10: 12cllcclion ol'llql~t incidcnl on 11 concilve nlirrot. 

Fig. 2.10: depicts cross sectional view of prrallel rays correspcinding Lo a plane 
wave WW incident on the mirror. The retlected rays converge on F. The optical 
path lengths of all rays reaching F must be the same: 

n ; ( A B  t BF) = 11; (EG t GF) = ... i l ; ( X Y  + *) 
-- 

Now let thc line scgrnents AB, EG, . . . , be prolonged through the mirror to 
points C, H, , . . , Z such tlial 

The two sets of equalities ;~hovc imply that + BC - EG .t = . .. 
= + m, which tclls us Ulat h e  diskmu belween WlV:lnd W' I~Vftlirough C, H, . . . , Z 
is constant. We have thus constructed a straight line W' CV' such that tlle points of M 
are equidistant from it and point F. By definition, then M is parr~bolic (with Focu,~F). 


