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21INTRODUCTION

I'n the previous unit you havelearnt that light isan electromagnetic wave. It ismade
up of mutually supporting electric and magnetic fields, which vary continuously in
space and time. An interesting question related to e.m. wavesis. What happens to
these fieldswhen such awave isincident on the boundary separating two optically
different media? From Unit 7 of PHE-02 Course you may recall that when a wave
passesfrom air to water or air to glass, we get areflected wave and a refracted
wave. Reflection of light from asilvered surface, alooking mirror say, is the most
common optical effect. Reflection of e.m. waves governstheworking of a radar.
Reflection of radiowaves by theionosphere makes signal transmission possible and
issocrucia in theareaof communication.

I'n your earlier school yearsyou have learnt that refraction explains the working of
lensesand isresponsible for seeing; our contact with surroundings. Even thegrand
spectacle of sun-set or arainbow can beexplained in terms of refraction of light.
Refraction of e. m. wavesformsthebasis of oneof thegreatest technological
applicationsin signal transmission. In fact, el ectro-optics has seen tremendous
growth viaoptical fibresfor avariety of applications.

In Unit 7 of PHE-02 course on Oscillations and Waves, you learnt to explain
reflection and refraction of waves on the basis of Huygens' wave model. Now the
guestion arises: Can we extend thisanalysisto el ectromagnetic waves, which include
visiblelight, radiowaves, microwaves and X-rays? In Sec. 2.2 you will learn to derive
the equationsfor reflected and transmittedfields (E and B) when an e.m. waveis
incident normally aswell asobliquely on the boundary of two media.

Y ou areaware that many physical systems behave according to optimisation
principle. In PHE-06 course you have learnt that-when several fluids'at different
temperatures are mixed, the heat exchange takes place so that the total entropy of
the system is maximum. A ball rolling on an undulating surface comesto rest at the
lowest point. The profoundness of such situations and scientific lawsgoverning
them led Fermat to speculate: Does light al so obey some optimization principle?
And he concluded: Ray of light chooses a path of extremum between two points.
Thisisknown asFermat's principle, Implicit init are the assumptions

(i) Lighttravelsat afinite speed, and
(i) Thespeed of lightislower in adenser medium.

In Sec. 2.4 you will learn about Fermat's principle. We have shown that all laws of
geometrical opticsare contained in it.



Objectives
After studying this unit you should be ableto Light

e explain reflection and refraction of e.m. wavesincident normally and
obliquely on theinterface separating two optically different media

apply Fermat’s principle to explain the reflection and refraction of light,
and

solve problems based on reflection and refraction of e.m. waves.

2.2 ELECTROMAGNETIC WAVES AT THE
INTERFACE SEPARATING TWO MEDIA

Consider a plane electromagnetic wavc that isincident on a boundary betwcen two
linear media. That is, D and H are proportiona to E and B, respectively, and the
constantsal proportionality are indcpendcent of position and direction. Y ou can
visualise it aslight passing from air (medium 1) to glass (medium 2). Let usassume
that thereare no free charges or currentsin the materials.

Fig. 2.1 showsa plane houndary between two media having different permittivity
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Fig.2.1: A vniform plane wave Is incident normally on a plane boundary. The reflected and
refracted (transmitted) waves are also shown. 'I'hc angle of incidence Isaand angle of
refraction Isf.

and permeability: £, u; for medium 1 and €4, pa for medium 2. A uniform plane
wavetravelling to the right in medium 1 isincident on the interfacenormal tothe
boundary. A sin the case of waveson a string, we expect a reflected wave
propagating back into the medium and a transmitted (or refracted) wavc travelling
in the second medium, Wc wish (i) 1o derive expressions for the fields associatcd
withreflected and refracted waves in terms of the field associated with theincident
waveand (ii) know the fraction of the incident energy that isreflected and
transmitted. T o do SO wc need to know the boundary conditionssatisfied by these
wavesat the interface separating thetwo media. We obtain these conditions by
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stipulating that Maxwell's equalions must besatisfied at the boundary between
these media. Wefirst state the appropriate conditions. Their proof isgiven in the
appendix to thisUnit.

Boundary Conditions

You learnt to derive the boundary conditionsfrom Maxwell's equations for a
medium freeof charges and currentsin Unit 15 of the PHE-O7 course on electric
and magnetic phenomena. For your convenience, we rewrite appropriate integral
form of theseequations:

BngdS =0 (2.121)
j;B.dS =0 (2.1b)
j;E dl = —d—fB dS
o ' o4t s : (2.10)
and
1 d

whereSis asurface bound by the closed loop C.

Theelectric field can oscillate either parallel or normal to the plane of incidence.
The magneticfield B will then be normal or parallel to the plane of incidence. We
will denote these with subscripts Il (parallel) and L (normal). The boundary
conditionsfor normal and parallel components of electric and magneticfields take
the form (Appendix A).

gnEy - 8E; =0 (2.2a)

By~ By =0 . (2.2b)

Ej- Ep =0 (2:2¢)
and

1 1

M—1B1”_ 0 By =0 (2.2d)

We shall now usethe boundary conditions expressed by Egs. (2.2a- d) to study
reflection and refraction (transmission) at normal aswell asoblique incidence.

2.2.1 Normal Incidence

Refer to Fig. 2.2. The yz-plaue (x = 0) formsthe interlace of two optically
transparent (non-absorbing) media (refractive indicesny and n,). A sinusoidal plane
wave of frequency w travellingin x-directionisincident from the left. From Unit 7
of the Oscillations and Waves course you will recall that progressive waves are
partially reflected and partially refracted at the boundary separating two physically
different media. However, the energy of thereflected or transmitted e.m. waves
depends upon their refractive indices.



Theappropriate magnetic fields to beassociated with el ectricfieldsare obtained Reflectionand Refraction of
fromthe equation Light

B
VxE =- o

Let us supposethat theelectricfield isalong they-direction. Then the el ectricand
magneticfieldsassociated with theincident wavearegiven by

Er(xt) = Eyj exp [i(kx=- wt)] (2.3a)
and

Bl(x,t)-i—(:lﬁexp[i(klx—wt)] (2.3b)

Thereflected wave propagates back into the first medium and can be represented by
thefollowingfields:

Er(x,t) = Exgj exp [- i(kjx+ wt)] (2.42)
ad
EoR .
BR(x,t)"'“v‘l"ﬁeXp[—z(ij+ ot)] (2.4b)

Theminussign in. the exponents in Egs. (2.4a,b) indicatesthat propagation of the
waveisin the «x direction. But the negativesign with theamplitudein Eq. (2.4b) =
arisesbecauseof transverse nature of e.m. wavesand that the el ectricand magnetic -
field vectors should obey the relation L

j_ A
BR';;(kI"ER)

where ﬁl isunit vector along thedirectiondf incidence.

If you visualiseEgs. (2.3) and (2.4) diagramatically, you will notethat theelectric
vectors have been kept fixed in the samedirection but the magneticfield vectors
havebeen oriented. Theorientation of the magnetic field vector ensuresthat the
flowof energy isalwaysalong thedirection of propagation of the wave (Poynting
theorem).

Theelectric and magneticfieldsof the transmitted wave, which travels tothe right "
in medium 2, aregiven by :

Ex(x,t) = Eorj exp [i(ort+ krx)] (2.52)
ad |
Br(x,t) = ;1;[ Ry x Bx (5,1)] (25b)

The phenomenon of reflection and refraction is usudly analysedin two parts:

(i) Todeterminethe relationsbetween thefield vectorsof the reflected and
refracted wavesin termsof that of theincident wave. Theserédations

determinethe reflection and the transmission coefficients. In thisderivation,
we match the E and B fieldsin thetwo mediaat theinterfacewith the help of
appropriateboundary conditionsthere.

(if) Toestablish relationsbetween the angleof incidenceand theangles of
reflection and refraction we may emphasizethat so far asthelawsof reflection
and refraction are concerned, explicit useof any boundary conditionis not
required.
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Fresnel’s Amplitude Relations

T o derive expressions for the amplitudes of thereflected and the refracted wavesin
terms of the amplitude of the incident wave, we apply boundary conditions given by
Eq. (2.2a-d) at every point on theinterface at all times. Atx =0, the combined
field to the left (E; T Ez and B; and By) must join thefields to the right (E; and By).
For normal incidence, there are no normal field components (perpendicular to the
interface). But why?This is because neither E nor B field isin thex-direction. This
meansthat Eqs. (2.2a,b) aretrivial and only tangential components of the electric
and magnetic fields should be matched at the plane x =0. Thus

Introducing Light

Ey + Eop = Eor (2.6a)

and

1 1
L (By+ Bog) = —Boy
Ml(OI R ) ., Dot

or

A Ea _ Eor) 1 Ey
Ml Wi Vi Uz v2
which, on simplification yields

a EQT (26b)

Eor — Eop

where

Uz vz Ha €2 M2 1y

Hivy ,/ W€y _ Wy A (2.6c)

Solving Egs. (2.6a) and (2.6b) for tne reflected and transmitted electricfield
amplitudesin termsof the incident amplitude, you will find that

1-a .,
Eor = ( 1T a)EOI, . | {2.7a)
and
o (2.7b)
Lo; o aEOI

For most optical media, the permeabilitiesare close to their valuesin vacuum

(W1~ p2= o). Insuchcasesa = :—iandwehave

EOR=(”2'“)E01

Vo + Vy

and

21)2
Va+ Vi

Eor = Eor , (2.8)

Thissuggests that when v > vy, the reflected wave will bein phase with the
incident waveand for vz < vy, the reflected and incident waves will beout of phase.

Thisisillustratedin Fig. 2.3.
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ig.2.3: Thephase relationship between reflected wave and theincident wave

Inwerms of theindex of refractionn ( %), we can rewriteEq. (2.8) as

hy~ M
= E,
Eox R+ My or
and
2711
- - 29
Eor = 375 1y Eo; (29)

When an e.m. wave passes trom ararer medium to adenser medium (n1 < n2), the
. Eop . . , .
ratio \%ORl | | be negative. Physically, it means that the reflected waveis 180° out
o1

of phasewith theincident wave. You have already learnt it in case of reflection of
sound waves in the course on Oscillations and Waves. When an ¢.m. waveis
incident from a denser medium on the interface separating it (rom a rarer medium

. Eor. ..
(m > mp), theratio Eioj; is positive and no such phase change occurs.

We can now easily calculate ther eflection and the transmission coefficients,
which respectively measure the fraction of incident energy that isreflectedand
transmitted. Thefirst step in thiscalculation isto recall that

1
R=2
i
and
1
T=Z
I

wherely, It and I; respectively denotethé reflected, transmitied and incident wave

intensity. Intensity isdefined asthe average power per unit area, (1/2) v 2 So you
can readily show that

ol (m-mY  (2.10a)
1 o+ m
and
2
podn_om(_2m (2.10b)
I | ng+ m
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Y ou can convince yourself that R +7 = 1 For air (1 = 1) - glass (#2 = 1.5)
interface, the R and Tcoefficients have thevaluesR = 0.04 and T=0.96. Thereis
no energy stored (or absorbed) at the interface and you can now realise why most of

the light is transmitted.
Wewill now repeat this exercise for the case of oblique incidence.

2.2.2 Oblique Incidence

Refer to Fig. 2.4. A plane electromagneticwaveisincident at an angle 6;. Let the
anglesof reflection and refraction beBg and 6r. Wecan represent the fields
associated with these three plane el ectromagnetic waves as

Incident Wave
Er=Epuexp[-i(owt- ki.r)]

1 A
BI = v ( kl X EI ) (lea)

Reflected Wave

ER=E0R exp[— i((DRt— kR.l')]
Br= = (Rex Eg)
R™ y ' RT R (2.11b)

Transmitted Wave

Er= Eor exp [- i(wrt- ky.r)]

1,4
BT= Vs (kTX ET) (2.11C)

Y ou may recall that the boundary conditions must hold at every point on the
interfaceat all times. If the boundary conditionshold at a point and at sometime,
they will hold at all pointsin spacefor all subsequent times only if the exponential
partsin above expressions for each wave are thesame, i.e,

wyt~ ky.r = opt- kp.r=wrt- ky.r
at theinterface. Thisimpliesthat:for equality of phasesat all timeswe must have
W = wp=or=o (say) (2.12a)

That is, the frequency of an e.m. wave does not change when it undergoesreflection
and refraction: all waves have the samefrequency. Sincethe fields must satisfy
Maxwell's equations, we must havefor the wave vectors

K1 h 4a

-(1){2— = -—-—2— = 51 lr-Ll (2.133)
p |
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PUILDET, 181 Ky, KJy 8NU K7z TEPQresent mex, y anaz componentsot K. Wecan use Reflection and Refraction of

similar notation for kr and kr. For the continuity conditionsto besatisfied at all Light
pointson the interface, we must have

k1y = kTy = kRy (27143)
and

klz = sz = kRz (214b)

El
0,-
KR
R

Fig.2.4: Thereflection of a planewove with its electric vector parallel {0 the plane of Incidence

Let uschoosethey-axissuch that
ky, =0
(i.e. weassumekp to liein the x-z plane - see Fig. 2.4). Consequenlly
kry = kgy=0 (2.14~)
Thisresult impliesthat thevectorsk;, kp and kg will liein thesame plane.
Further, from Eqg. (2.14b) we get
k; sin®; = kr sinBr = kg sinBy (2.15)

Since | k, | = | kg | (see Eq. 2.13a and ¢), we mugt have
0, = Og (2.16)

Thatis, theangle of incidenceisequal to theangleof reflection, which isthe law of
reflection. Further,

sin®; kr wVeu
N E el
Sn BT k[ WV gy

or

sin O
VAT (2.17)

sin 67 €111

If wedenote the speeds of propagation of thewavesin media 1 and 2 by

. 1 1
( mr) and ”2(’ Yoy

]wefind that EQ. (2.17) can berewritten as

S
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Sné_ v _m (2.18)

snar w n

c c .
where ny = — = cVe s and m= —=CVE.

Vi V2

representtherefractiveindicesof medialand 2 respectively. Do you recognise
Egq. (2.18)? Itisthewell known Snell’s law.

Egs. (2.16) and (2.18) congtitutethe laws of reflection and refractionin optics.

Y ou can now derive Fresnel's amplitude relations following the procedure outlined
for the casedf normal incidence. For brevity, we just quote the resultswithout
going intodetails. (Y ou will not beexamined for the samein the term-end
examination.) When E oscillates parallel to the plane of incidence, we have

Ep _tan(8- 6r) (2.19a)
Ej  tan(8;+ 6r)

Eﬂ[ _ 2 cos 91 sin GT (2.19b)
En ~ sin(6; + 8r)cos(8; - 6¢)

When E oscillatesnormat to the plane of incidence, we have

Ery sin (6; - 6r)

En,  sn (8 +6r) (2.20a)

Er 2sin 8y cos By

= — 2.20b
£, Sn(& * 0r) (2.200)

You can easily verify that for normal incidence these equationsreduceto Eq.<(2.9).

The correspondingexpressionsfor reflections and transmission coefficients for
normal and parallel oscillationsof E when a plane waveisincident obliquely are

_ tan’ (8 - Br) - (221)
| tan® (6 + 6r)

sin 26;sin 267 (2.21b)

Tl =27 200, -

sin“( 6 + 6r)cos” (8, - 67)

sin? (6; - 67) (2.21¢)
R-—"1—%

gn® " 6, + GT)

and

in26;sin 26 21d

7 = sin 26, sin 26 (2.21d)

sin®(6; + 8y)

Asbefore, you can easily show that for normal incidence these equations reduce to
Eq.(2.10a, b).



2.3 |DEAL|ZAT|ON OF WAVES AS LIGHT RAYS Reflection and Refraction of

Light
So far you havelearnt to explain reflection and refraction of plane electromagnetic
wavesat aplaneinterface. Thissignifiesa relatively simplesituation where the
solutions of Maxwell's equations give the laws of propagationdf light. It is not true
in general and weinvariably seek approximations to describe a phenomenon well.
Onesuch approximation makes use of smallnessof wavelength of light. Y ou know
that thewavelength of light isvery small ( ~10~"m). It isorders of magnitudeless
» N

Fig.2.5: Ray representation of n plane, diver gingspherical and converging

spherical wavefronts moving from left to right
than thedimensions of optical instruments such as tel escopesand microscopes. In Huygens proposed that light
such cases, the passage of light ismost easily shown by geometrical rays, A ray is propagates asa wavefront (a
the path of propagation of energy in the zero wavelength limit { . — 0 ). Theway surfaceof C_O”Sta”;dphase)
in which rays may represent the propagation of wavefronts|or some familiar Deraendiatilar toitslf with the

situations isshown in Fig. 2.5. You will note that a planewavefront corresponds to speed of light. Thezero
parallel raysand spherical wavefronts correspond to rays diverging from a point or wavelength approximation of
convergingtoapoint. Youwill agree that all partsof thewavefront take the same wave opticsisknown as
timeto travel from thesource. geometrical optlcs.

The lawsof geometrical optics are incorporated in Fermat's principle. We will now
discussitin detail.

2.4 FERMAT’S PRINCIPLE

Initsoriginal form, Fermat’s principle may be stated asfollows;

Any light ray travels between two end pointsalonga linerequiringthe
minimum transit time.

If visthe speed of light at agiven point in amedium, the time taken to cover the
distanced! is

dt = Eii (2.22)

In your earlier yearsyou havelearnt that therefractiveindex of a medium isdefined
astheratio of the speed of light in vacuum to itsspeed in the medium, i.e.

n =

<io

Using thisrelation in EQ. (2.22), we get
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Hence, the time taken by light in covering the distance from point A to B is

B
T = lfn dl
C
A
The quantity
B
L= f ndl (2.23)
A

hasthe dimensionsdf length and iscalled the optical distance or optical path
length between two given points. You must realise that optical distanceisdifferent

B
fromthe physica (geometrical) distance( = fdl ). However, in a homogeneous
A

medium, the optica distance is equal to the product of the geometrical length and
the relractive index of the medium. Thus, we can write

L

T ==

¢
Thisis Fermat’s principle of least time. Let us pause for a moment and ask: Is there
any cxception to thislaw? Yes, there are cases where the optical path corresponds
Lo maximum time oOr it is ncither a maximum nor a minimum, i.e. stationary. To
incorporale such situations, this principlc ismodified as follows:

Out of many paths connecting twe given points, the light ray followsthat path
for which the time required isun extremum. In other words, the optical path
length between any two pointsis a maximum, minimum, or stationary.

The essential point involved in Fermat's principlc isthat slight variation in the
actual path causes a second-order variation in the actual path. Let usconsider that
light propagates {rom point A in the medium characterised by the relractive index n
to the point B asshown in Fig. 2.0. According to this principle,

B
bfn(x,y,z)dl =0 (2.24)
A

“or ahomogeneousmedium, the rays arc straight lines, since the shortest optical
path between two pointsis along a straight linc.

In effect, Fermat’s principle prohibits the consideration of an isolated ray of light.
It tells us that a path is real only when we extend our ¢xamination to the pathsin
immediateneighbourhood of therays. To understand the meaning of this
statement, let us consider the case of finding the path of aray from apoint A toa
point B when both of them lie on the same side of a mirror M (Fig. 2.7). It can be
seen that the ray can go directly from A to B without suffering any reflection.
Alternatively, it can go along the path APB after sufferinga single reflection from
the mirror. If Fermat's principle had asked for, say, an absolute minimum, then the
path APB would be prohibited; but that is not theactual case. The path APB isalso
minimum in the neighbourhood involving paths like AQB. The phrase "immediate
neighbourhoodof path” would mean those pathsthat lie near the path under



consideration and aresimilar toit. For example, the path AQB liesnear APB and is
similar to it; along both pathsthe ray suffers one reflection at the mirror. Thus
Fermat's principle requires an extremum in the immediate neighbourhood of the
actual path, and in general, there may be more than oneray path connecting two
points.

All thelawsof geometrical optics are incorporated in Fermat's principle. We now
illustrate Fermat's principle by applying it to reflection of light.

Examplel
Using Fermat's principle, derivethelaws of reflection.
Solution

Let us first consider the case of reflection. Referto Fig. 2.8. Light from apoint A is

reflectedat a mirror MM towards a point B.A ray APB connects A and B. 6; and 6p
aretheanglesof incidenceand reflection, respectively. We have denoted the

vertical distances of A and B from the mirror MM by a and &, From the construction
in Fig. 2.8 and Pythagoras' theorem, wefind that the total path length | of thisray
fromA toMM to B is

I =V + 5% + Vb + (d= x ) (2.25)

wherd x isthe distance between the foot of the perpendicular fromA and the point P
at which the ray touches the mirror.

According to Fermat's principle, P will have aposition such that thetime of travel
of the light must be a minimum (a maximum or stationary), Expressed in another
way, the total length | of the ray must be a minimum or maximum or stationary, In
other words, for Fermat's principle to hold, the derivativc of / with respect to x must
be zero, i.e. dl/dx = 0. Hence, on differentiating Eq. (2.25) with respect ton, we get

1, 2 212 112 27 -1/2
. S(d*+ X)) (2x)+ =[ b+ (d-x) x 2(d-x)(-1)=0
dx 2( 2[ ]
(2.26)
which can berewritten as
X d-x
@+ 202 " [Fr (4 2] (2:27)
By examining Fig. (2.8) you will not:  that thisgives
sinB; = sin By
or
O = O (2.28)

which is(part of) the law of reflection. You will also note that theincident ray, the
reflected ray and the normal to MM lie in thesame incidencce plane.

Inthe above example time required or the optical palh length canbe seen tobe
minimum hy cal culating thesecond deviative and finding itsvalue at x for which
difdx = 0. The 2nd derivative turns out to bc positive, showing it to be minimum.
You can convince, yourself by carrying out thissimple caculation.

We now summarise what you have learnt in this unit.
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25 SUMMARY

e  When an e.m. wave isincident normally an the interface separating two
optically different media. the reflected and transmitted electric field
amplitudesare given by

1-«a
= E;
Eor T3 o bu
and
"
Enp = —— E|
o= Ty g

wherea = Vu €/, ¢, ad Eyisamplitude of incident electric field.

¢ Thefrequency of an e.m. wave isnot affected when it undergoes retlection
or refraction.

¢ Fermat's principlestates that aray of light travels between two given
pointsalong that path for which the time required isan extremum:

B
d) n(x,y,c)dl =0
)

2.6 TERMINAL QUESTIONS

DeriveSnell’s law from Fermat's principle.

2. A collimatedbeam isincident parallel to the axis of aconcave mirror. It is
reflected into a converging beam. Using Fermat's principle show that the
mirror isparabolic.

2.7 SOLUTIONS AND ANSWERS

TQs

1 Toprovethelaw of refraction from Fermat's principle, consider Fig. 2.9,
which shows that the points A and B are in two optically different media. (If
the refractive index on both sides of the boundary SS were the same, the path
from A to B would be a straight line, irrespective ol the magnitude of the
refractiveindex. But the refractive indices are not the same and the ray APB is
not astraight line.) Suppose that the velocitiesof light on the two sides of the
boundary arev, and v,. Since v = /¢, the time light takes to traverse the paths
APandPB is

t=‘/a2+x2+\/b2+(d—x)2=l_1+_1;_;_ 0
Vi Vo Vi Vo

&

Using therelation == 2/ v, thiscan be rewritten as

Comlhi v mb

T e T
wherel (= n, |, t1. I,) istheoptical path length of the ray. The geometrical
path in this case is/, t/,. If A isthewavelength of light in vacuum and A, in a
medium of refractiveindex i, then A = n A, Thisshows that the optical path
length isequal o the length that the same number of waveswould haveif the
medium were a vacuum.



Fig.2.9: A ray from A passesto B after refraction al P

Fermat's principle requires that dl / dx = 0 for some values of x. The optical
pah length
| = 11 ny + [2112

=mYV ((12+ x-i—). + mY b+ (d - x)2

so that % =n X 7= M d- X 7 =0

(a2+ xz) L[b2+(d—x)2]
X I d- x

or M———qm =
7(a2+x2)v " {b"‘+(d—.7c)2}1/2

Asbefore, we can writeitin terms of the anglesaf incidenceand refraction as

nrsin 6, = mSn GR

which is Snell’s law oOf refraction. It showsthat when light passesfrom a

medium of lower refractive index (rarer medium) to amedium of higher refrac-

tiveindex (denser medium), it bends towards the surface normal.
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Fig. 2.10: Reflection of light incident On a concave mirvor

Fig. 2.10: depictscrosssectional view of parallel rays corresponding Lo a plane
wave WW incident on the mirror. The reflected rays convergeon F. The optical
path lengths of all rays reaching Fmust be thesame:

n;(AB + BF) = n;(EG + GF) =...m; (X7 + YF)

Now let the line segments AB, EG, ... , X¥ be prolonged through the mirror to
mntsc, H! 3vey Z SJCh thal

BC = BF, GH = GF,...,YZ = YF
The two setsof equalities above imply that AB + BC = EG + GH = ...

= XY + YZ, which tells us that the distance between WWand W' W'through C, H, ..., Z
Isconstant. W¢ have thus constructed astraight line W' W such that the points of M
areequidistant from it and point F~. By definition, then M is parabolic (with Focus F).
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