
UNIT 9 HOPFIELD NETWORKS

Structure Page No.

9.1 Introduction 29
Objectives

9.2 Related Definitions 30

9.3 Hopfield Networks 33

9.4 Structure of Hopfield Networks 35

9.5 The Functionality of Hopfield Networks 36

9.6 Storage Capacity of Hopfield Networks 41

9.7 Summary 43

9.8 Solutions/Answers 44

9.9 Practical Assignments 45

9.1 INTRODUCTION

One of the most important functions of human brain is the laying down and recall of

memories. More over the studies in neurodynamics indicate the presence of short-

term and long-term memory. The short-term memory contributes in processing

routine tasks while long-term memory helps in storing the lesson from the past

experience. Our memories mostly function in a manner better termed as associative

or content-addressable. That is, a memory does not exist in some isolated fashion,

located in a particular set of neurons. All memories are in some sense strings of

memories. For example, we remember a place or a person by some event. Sometimes

more than the facial features of a person it is the voice or the peculiarity of the name

that impresses our memory. Thus, memories are stored in association with one

another.

The neural network researchers contend that there is a basic mismatch between the

standard technology used by computers and the technology of the human brain for

processing information. Feed-forward neural networks are well studied for obvious

reasons of simplicity in understanding and modelling the computation. Feed forward

network is acyclic. The artificial neurons or the perceptrons in a feed-forward neural

network model have no cyclic connections. The input data is processed and passed to

the outputs but not vive-versa.

Recurrent networks can have connections that go back from the output nodes and can
also have arbitrary connections between any nodes. That is a recurrent neural network

has at least one feedback loop. For example, in a single layer recurrent network each

neuron may have a feedback connection to each of the other neuron or it may even

have self-feedback loops.

As learning using perceptrons is a process of modifying the values of the synaptic
weights and the threshold or the activation function using samples of training data. A

group of (connected) perceptrons are trained on sample input-output pairs until it

learns to compute the correct function. Once a feed-forward network is trained, its

state is fixed which is not altered by any subsequent input data until the network is

retrained. This indicates that a feed-forward neural network does not have memory.

In a neurobiological context memory refers to “the relatively enduring neural

alterations induced by the interaction of an organism with its environment”. Learning

tasks lead us to assume existence of memory. Therefore, the alterations indicate

presence of memory and for its usefulness memory needs to be accessible.

Associative memories have a very faint similarity to that of the human brain’s ability

to associate patterns. The architecture of a neural network with associative memory

Applications of Neural

Networks

30

depends on its capability of association. An associate memory is a storehouse of

associated patterns encoded in some form. When this storehouse is triggered or

incited with a pattern the associated pattern pair is recalled or output. An associative

memory network is designed by storing/recording several ideal patterns into the

network’s stable state. When a pattern (even with noise or distorted representation of

stored patterns) is input to the storehouse, the network is expected to reach one of the

stored patterns and retrieve it as an output. These neural network models are

categorized as association models and are also known as content addressable or auto-

associative neural networks. All the definitions will be discussed in Sec. 9.2. In Sec.

9.3 we shall discuss Hopfield networks. In Sec. 9.4, we shall discuss the structure of

the Hopfield networks, in detail and we shall extend our discussion on the

functionality of the Hopfield networks in Sec. 9.5. The storage capacity of this

network is discussed in Sec. 9.6.

Objectives

After reading this unit you should be able to:

• identify and design general association and recurrent models of neural network;

• model Hopfield networks;

• train Hopfield networks for a given set of patterns;

• give a trained network to run the Hopfield for a test pattern with noise may

require rigorous computation specially if dimension of the vectors is high.

9.2 RELATED DEFINITIONS

Let us recall various definitions as given below:

Recurrent Networks: The interconnection scheme of the recurrent networks is

feedback connection or loops as shown below in Fig. 1.

 Fig. 1: Recurrent network

Associative Memory: An associative memory is a brain-like distributed memory that

learns by association. Association is one of the basic features of the human memory

and is prevalent in most models of cognition. Associative memory can be categorized

as auto associative memory and Hetero associative memory. These are defined in the

following:

Input

Output

Hopfield Networks

31

i) Autoassociation: In autoassociation a neural network is required to store a set

of patterns (vectors) by repeatedly presenting them to the network. The

network is subsequently presented a partial description or noisy version of an

original pattern stored in it, and the task is to recall or more specifically retrieve

that particular pattern.

ii) Heteroassociation: In heteroassociation an arbitrary set of input patterns is
associated (paired) with another set of arbitrary set of output patterns. The task

of retrieval of patterns however is similar i.e. on input of a stored pattern or a

distorted version of the already stored pattern the original pattern coupled with

the given input is recalled.

Let
kx be the key pattern (vector) applied to an associative memory and

ky be the

memorized pattern (vector). The pattern association performed by the network is

described by,

 k kx y , k 1, 2, , q→ = …

where q is the number of patterns stored in the network. The key pattern kx acts as

the stimulus that not only determines the storage location of the memorized pattern

ky , but also holds the key for its retrieval.

Fig. 2: Input-output relation of the pattern associator

Auto-associative networks consist of one layer of neural elements (units) that are all

interconnected, although self-connections are usually disallowed. The neural elements

are nonlinear, with states bounded from zero to one – so called two-state-neurons.

Any state, whether initial or desired, will be represented by some pattern of zeros and

ones over the units. Recurrence and nonlinearity lie at the heart of auto-associative

network behaviour. Recurrence allows desired states to emerge via interactions

among the units, and the nonlinearity prevents the whole network from running away,

and instead encourages the network to settle into a stable state. The auto-associative

network will, in most cases, relax from any initial state into the desired state closest to

it.

The interconnections between units can be trained according to Hebbian rules

(proposed in 1949) - “when one cell repeatedly assists in firing another, the axon of

the first cell develops synaptic knobs (or enlarges them if they already exist) in contact

with the soma of the second cell.” Hebbian rules are local, in the sense that they

depend only upon the activity of neurons pre- and post-synaptic to any particular

connection. The original rule proposed by Hebb specified an increase in synaptic

strength whenever pre- and post-synaptic neurons were active together.

Therefore in an association net, if we compare two patterns components (vectors or

pixels) within many patterns and find that they are frequently in the same state then

the arc weight between the two perceptrons must be increased (should be positive) and

if they are frequently in different states, then the arc weight between the two

perceptrons must be decreased (should be negative).

There are two phases involved in the operation of an associative memory:

• Storage phase: This refers to the training of the network.

Pattern
Associator

Input Vector x
Output vector y

Applications of Neural

Networks

32

• Recall/Retrieval phase: This involves the retrieval of a memorized pattern in

response to the presentation of a noisy or distorted version of a key pattern to

the network.

Matrix Representation: For the computation a matrix representation is a practical

tool.

Let X = matrix of input patterns, where each ROW is a pattern.

So k, ix = the i-th bit of the k-th pattern.

Let Y = matrix of output patterns, where each ROW is a pattern. So k, jy = the j-th

bit of the k-th pattern. Then, average correlation between two input patterns i and j

across all patterns is:

 i, j 1, i 1, j 2, i 2, j p, i p, jw 1/ P(x y x y x y)= + + +⋯ (1)

All weights for an associative memory network model therefore can be calculated by

the following:

 TW X Y= (2)

Therefore, for a set of input patterns: 1 2 pIP , IP , , IP… , and output patters

1 2 pOP , OP , , OP… ,

1 1,1 1,n

2 2,1 2,n

p p,1 p,n

IP x ... x

IP x ... x
X

: : : :

IP x ... x

 
 
 =
 
 
  

1 2 p

1,1 2,1 p,1

T
1,i 2,i p,i

1,n 2,n p,n

IP IP ... IP

x x ... x

: : ... :

x x ... xX

: : ... :

x x ... x

 
 
 
 =
 
 
 
 

1,1 1, j 1,n1

2,1 2, j ... 2,n2

p p,1 p, j ... p,n

y ... y ... yOP

y ... y yOP
Y

: : : :

OP y ... y y

 
 
 

=  
 
  

From the above sets of vectors (matrices)
TX and Y, it is obvious that Eqn. (1) is the

dot product of i-th row of TX and the j-th column of Y . But since the output vector

in case of autoassociation is one of the earlier memorized vectors it is one of vectors in

X itself and therefore the weight calculation autoassociation networks is,

 TW X X= (3)

Hopfield Networks

33

Consider the following procedure to explain the associative memory network model.

Input: Pattern (often noisy/corrupt)

Output: Corresponding pattern (complete/relatively noise-free)

Process:

1. Load input pattern onto highly-interconnected neurons (a trained network on

given set of library patterns).

2. Run the neurons until they reach a steady state.

3. Read output off the states of the neurons.

Subsequently Fig. 3 and fig. 4 give a graphical illustration of the procedure.

Now, let us discuss Hopfield networks in the following section.

9.3 HOPFIELD NETWORKS

The Hopfield Net proposed by J.J. Hopfield in 1982 is a neural network that is a lot

simpler to understand than the Multi Layer Perceptron. For a start, it only has one

layer of nodes. Unlike the MLP, it doesn't make one of its outputs go high to show

which of the patterns most closely matches the input. Instead it takes the input pattern,

which is assumed to be one of the library patterns which has been changed or

corrupted somehow, and tries to reconstruct the correct pattern from the input that you

give it.

Input
Output

Input: (1 0 1 -1 -1)
Output: (1 -1 1 -1 -1)

Fig. 3: Trained associative network

Fig. 4: Running an input pattern

Applications of Neural

Networks

34

Hopfield networks are Recurrent neural network model that possesses auto-associative

property. Therefore the network is fully interconnected with the exception that no

neuron has any connection to itself. Thus, the Hopfield network is a form of artificial

neural network that serve as content-addressable memory systems with binary

threshold units. They are guaranteed to converge to a stable state. The aim of the

Hopfield network is to recognize a partial or distorted input pattern as one of its

previously memorized vectors and to output the perfect and complete memorized

version.

Thus the Hopfield networks proposed as a theory of memory has the following

features:

1. Distributed Representation: A memory is stored as a pattern of activation

across a set of processing elements. Further, the memories can be

superimposed on one another; different memories are represented by different

patterns over the same set of processing elements.

2. Distributed Asynchronous Controls: Each processing element makes

decisions based only on its own local situation. All these local actions add up to

a global solution.

3. Content-addressable Memory: A number of patterns can be stored in a
network. To retrieve a pattern, we need to only specify a portion of it. The

network automatically finds the closest match.

4. Fault Tolerance: If a few processing elements misbehave or fails completely,

the network will still function properly.

The main concept underlying the Hopfield network is that a single network of

interconnected, binary-valued neurons can store multiple stable states, the library

patterns also called attractors, similar to the brain – the full pattern can be recovered if

the network is presented with only partial information just as described in associative

memories. Furthermore, there is a degree of stability in the system, if just a few of

the connections between neurons are severed, the recalled memory is not too badly

corrupted, the network can respond with a "best guess". The nodes in the Hopfield

network are vast simplifications of real neurons, they can only exist in one of two

possible "states" - {firing, not firing} or { }0, 1 or {1, 1}− . Every node is connected

to every other node with some strength (synaptic weights). At any instant of time a

node will change its state (i.e. start or stop firing) depending on the inputs it receives

from the other nodes.

If we start the system off with any general pattern of firing and non-firing nodes then

this pattern will in general change with time. To see this think of starting the network

with just one firing node. This will send a signal to all the other nodes via its

connections so that a short time later some of these other nodes will fire. These new

firing nodes will then excite others after a further short time interval and a whole

cascade of different firing patterns will occur. One might imagine that the firing

pattern of the network would change in a complicated perhaps random way with time.
The crucial property of the Hopfield network which renders it useful for simulating

memory recall is the following: it guarantees that the pattern will settle down after a

long enough time to some fixed pattern. Certain nodes will be always "on" and

others "off". Furthermore, it is possible to arrange that these stable firing patterns of

the network correspond to the desired memories we wish to store.

Example 1: Suppose we have trained our Hopfield Net on the three patterns given in

fig. 5:

Hopfield Networks

35

Fig. 5

Next we input a pattern which is a bit like one of these, say the left most one given in

the Fig. 6. Leave the network to run. It gradually alters the pattern we give it until it

has reconstructed one of the originals ones, the right most one.

Fig. 6

The Hopfield Net is left to iterate (loop round and round) until it doesn't change any

more. Then it should match one of the input patterns. The program should then

compare the reconstructed pattern with the library of originals, and see which one

matches.

9.4 STRUCTURE OF HOPFIELD NETWORKS

The structure of the Hopfield networks model is shown in Fig. 7.

OUTPUTS (Valid after convergence)

 INPUTS (Applied at time zero)

Fig. 7: Hopfield Network Model

The inputs to the Hopfield Net are at the bottom. The nodes produce an output which

comes out at bottom and is fed back into all the nodes except the one that produced it

(i.e. all the nodes refer to each other, but not to themselves) and uses this to produce

the next output. The final output of the nodes is extracted at the top. For a network

of N neurons, the state of the network is denoted by the vector,

 T
1 2 N(s , s , , s)=s …

Each js 1= ± , the state of neuron j represents the one bit of information, and the N 1×

state vector s represents a binary word of N bits of information. As the units/neurons

Applications of Neural

Networks

36

have a binary threshold units, the dynamical rule has the possibility of two definitions

for
ia the activation of neuron i :

ij j ij

i

1 if w s ,
a

1 otherwise.

 ≥ θ
= 

−

∑
 (4)

or,

ij j ij

i

1 if w s ,
a

0 otherwise.

 ≥ θ
= 


∑
 (5)

where, ijw is the connection (synaptic) weight from neuron i to neuron j as in Eqn.

(1), js is the state of neuron (unit) j and iθ is the threshold of the neuron i . The

above relation in Eqns. (4) and (5) may be written in the compact form,

 i ij ja sgn[w s]= Σ for all j 1, 2, ,N= …

where, sgn is the signum function. If ia is zero then the action can be arbitrary.

However, the neuron I may remain in the previous state regardless of whether it is on

or off. The feedback network with no self-looping, Hopfield networks also have the

following two restrictions on due to the kinds of interconnection that prevails:

i) iiw 0= for all neurons i . i.e. there is no loop/connection to itself, and

ii) ij jiw w= for all neurons. i.e. the connections are symmetric.

The Hopfield nets also have a scalar value associated with each state of the network

referred to as the energy, E of the network. Energy is defined as below,

 ∑ ∑
<

+−=
ji i

iijiij ssswE θ (6)

The reason for this is somewhat technical but we can proceed by analogy. Imagine a

ball rolling on some bumpy surface. We imagine the position of the ball at any instant

to represent the activity of the nodes in the network. Memories will be represented by

special patterns of node activity corresponding to wells in the surface. Thus, if the ball

is let go, it will execute some complicated motion but we are certain that eventually it

will end up in one of the wells of the surface. We can think of the height of the

surface as representing the energy of the ball. We know that the ball will seek to

minimize its energy by seeking out the lowest spots on the surface-the wells.

In the language of memory recall, if we start/ initiate the network with a pattern for

firing, the network must approximate one of the "stable firing patterns" in the

memories. However, it will "under its own steam" end up in a nearby (with respect to

the threshold) well in the energy surface thereby recalling the original perfect memory.

In the following section, we shall focus on the functionality of Hopfield networks.

9.5 THE FUNCTIONALITY OF HOPFIELD

NETWORKS

As mentioned earlier that Hopfield nets are a special case of associative networks or

content-addressable memory nets. Therefore, Hopfield nets too have the

corresponding two phases namely, Storage phase and the Retrieval phase.

Hopfield Networks

37

Storage Phase: Let us have M, N-dimensional vectors to be stored in the Hopfield

nets, say kP {p | k 1, 2, , M}= = … . The m vectors compose the library or the

fundamental memories, representing the patterns to be memorized by the network.

Let k, Ip denote the i-th element of the fundamental memory kp . According to the

Hebb’s rule the synaptic weights from neuron i to j can be computed using

Eqn. (1) i.e.

 ij 1, i 1, j 2, i 2, j M, i M, jw 1/ N(p p p p p p)= + + +⋯ (7)

and iiw 0= for all neurons i 1, 2, ,M.= … Let W denotes the N N× synaptic weight

matrix or connectivity matrix of the network.

M

T
k k

k

1
W p p MI

N
= −∑ (8)

where, T
k kp p denoted the dot product of the k-th vector and its transpose. I is the

identity matrix. From the above computation the following three points are

reconfirmed:

• The output of each neuron in the network is fed back to all other neurons.

• There is no self-looping in the network.

• The weight matrix of network is symmetric.

Retrieval Phase: This phase is initiated on input of an N-dimensional vector as input

say tp , to the trained network. This is also called a probe. Typically the probe has

elements 1± and is thought to be a noisy or incomplete version of any of the attractors

already in the library/ fundamental memory. The information retrieval starts with a

dynamical rule in which each neuron i of the network randomly but at some fixed rate

examines its activation function ia as a result of the connectivity its neighbouring

neurons. While examining if ia is greater than zero then the state is changed to 1 else

remain in the previous state. But if the value of ia is less than zero then switch state

to 1− . However, if the value of ia is equal to zero then the state is left in its previous

state regardless of whether it was in on or off state. The updating of the states of the

neurons is deterministic but selection of the neurons for updating states is done

randomly in serial (asynchronous) or synchronous. Starting with the test input or the

probe vector the network must finally reach a state of stability, or produce time

invariant state vector as the output pattern i.e. y , whose individual elements satisfy

the following stability condition,

N

i j,i ti

i 1

y sgn w p , j 1, 2, , N
=

 
= = 

 
∑ … . (9)

or the matrix form,

sgn()= ty Wp (10)

Example 2: Consider the following example:

i) Input Patterns M 3, N 4, 3= = 4-dimensional vector.

IP1 1 1 1 –1

IP2 1 1 –1 1

IP3 – 1 1 1 –1

Applications of Neural

Networks

38

ii) The average correlation across the three patterns to design and train the

Hopfield network.

i, jw IP1 IP2 IP3 Avg

1,2w 1 1 –1 1/3

1, 3w 1 –1 –1 –1/3

1, 4w –1 1 1 1/3

2, 3w 1 –1 1 1/3

2, 4w –1 1 –1 –1/3

3, 4w –1 –1 –1 –1

1 1 1 1

X 1 1 1 1

1 1 1 1

− 
 

= − 
 − − 

 T

1 1 1

1 1 1
X

1 1 1

1 1 1

− 
 
 =
 −
 
− − 

The weight for the auto association network is T

3 1 1 1

1 3 1 1
W X X

1 1 3 3

1 1 3 3

− 
 

− = =
 − −
 

− − 

Here it is clear that in the connectivity matrix 2, 4 4, 2w w= or in general the

lower and the upper triangles of the product matrix represents the 6 weights

i, j j, iw w= . We can scale the weights by dividing them by p 3= . For the

iterative purposes it is easier to scale by p at the end instead of scaling the

entire weight matrix W prior to testing. Now let us construct the Hopfield net

and training it with the inputs 1 2 3IP , IP , IP .

[– 1/3]

[+1/3]

Fig. 8: Hopfield network

1
2

4 3

si = 0 for i =1, 2, 3, 4

Hopfield Networks

39

iii) Now consider the testing input = (1 0 0 –1).

iv) Synchronous iteration to update all the nodes.

3 1 1 1

1 3 1 1
(1 0 0 1) (2 2 2 2)

1 1 3 3

1 1 3 3

− 
 

− − = −
 − −
 

− − 

Table 1

Inputs

Node 1 2 3 4 Output

1 1 0 0 -1/3 1

2 1/3 0 0 1/3 1

3 -1/3 0 0 1 1

4 1/3 0 0 -1 -1

The diagonal represents the values from the input layer in the above table depicting

the result of the synchronous iteration modeled by the preceding computation.

Now scaling the output by dividing by p 3= and using the threshold 0θ = , we obtain

the vector (2 /3 2/ 3 2 /3 2/ 3) (111 1)− ⇒ − the same as 1IP an attractor in the library.

Consider the following figure to display the processing in the Hopfield net to reach a

stable state again with the output vector as computed earlier. The graphical

representation of the output is given in Fig. 10.

Fig. 10: (1 0 0 –1) →→→→ (1 1 1 –1)

1 2

4 3

1 2

4 3

[- 1/3]

[+1/3]

Fig. 9: With input (1 0 0 –1)

1
2

4 3 s1 = 1; s2 = 0;

s3 = 0; s4 = -1

Applications of Neural

Networks

40

Now, try some exercises.

E1) Run the above Hopfield network for the test input vector (1 0 0 0) .

E2) Draw the graph of the input to output vector obtained in E1).

The smart thing about the Hopfield network is that there exists a rather simple way of

setting up the connections between nodes in such a way that any desired set of patterns

can be made "stable firing patterns". Thus any set of memories can be burned into the

network at the beginning. Then if we kick the network off with any old set of node

activity we are guaranteed that a "memory" will be recalled. Not too surprisingly, the
memory that is recalled is the one which is "closest" to the starting pattern. In other

words, we can give the network a corrupted image or memory and the network will

"all by itself" try to reconstruct the perfect image. Of course, if the input image is

sufficiently poor, it may recall the incorrect memory–the network can become

"confused"–just like the human brain. We know that when we try to remember

someone's telephone number we will sometimes produce the wrong one! Notice also

that the network is reasonably robust–if we change a few connection strengths just a

little the recalled images are "roughly right". We don't lose any of the images

completely.

Example 3: Consider a Hopfield network whose weight matrix is given by,

0 2 2
1

w 2 0 2
3

2 2 0

− 
 

= − − 
 − 

Consider a test input vectors 1pt (1 11)= − and 2pt (11 1)= − − .

Using the Eqn. (9) and then its transpose results in the desired vector.

Therefore,

0 2 2 1 4
1 1

2 0 2 1 4
3 3

2 2 0 1 4

−     
     

= − − − = −     
     −     

T

1Wpt

1

Sgn () 1

1

 
 

= = − 
  

1 1y Wpt

Since the CM or the weight matrix is symmetric we can also directly get the vector as

by the product of vector and the matrix, i.e. ptW

0 2 2
1

sgn () (11 1) 2 0 2 (11 1)
3

2 2 0

− 
 

= = − − − − = − − 
 − 

2 2y pt W

Eqn. (10) is also known as alignment condition. The state vectors that satisfy the

alignment condition are stable states. Therefore, the given patterns are stables state

vector too.

If we consider the following vectors as probes for this example, (1 11), (1, 1, 1)− − or

(1 1 1)− − . The resulting output is (1 11)− . Note that each of the probes had single

error compared to the stored memory.

Hopfield Networks

41

Similarly, consider another set of test patterns to input to the Hopfield network

(11 1), (1 1 1)− − − − or (111)− . The resulting output vector in this case is computed

to be (11 1)− − . In this case too the test patterns are noted to have single error.

Now, try the following exercises.

E3) Run the Hopfield network of Example 2 for the test input vector (11 0 0) .

Also, draw the graphical representation of the output.

E4) Consider the set of pattern vectors P . Obtain the connectivity matrix (CM) for

the patterns in P (four patterns).

1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1
P

1 1 1 1 0 0 0 0 0 1

1 0 1 0 1 0 1 0 1 0

 
 
 =
 
 
 

In the following Section, we shall discuss the storage capacity Hopfield Networks.

9.6 HOPFIELD NETWORKS: STORAGE CAPACITY

There are two major limitations of Hopfield networks. One is the tendency to local

minima, which is good for association but bad for optimisation. The other limitation

is on the network capacity. For a network of N binary nodes, the capacity limit is of

the order of N rather than
N

2 . If the patterns or the vectors are N-dimensional then

there must be network of N binary nodes.

However, the capacity is equal to the relationship between the number of patterns that

can be stored & retrieved without error to the size of the network. Let M be the

number of patterns to be stored or fundamental memories. So long as the storage

capacity is of the network is not overloaded i.e., M is small compared to N .

M M

Capacity or,
N Number of weights

=

If we use the following definition of 100% correct retrieval, when any of the stored

patterns is entered completely (no noise), then that same pattern is returned by the
network; i.e. The pattern is a stable attractor. A detailed proof shows that a Hopfield

network of N nodes can achieve 100% correct retrieval on P patterns if:

P N /(4 *ln(N))< .

N Max P

10 1

100 5

1000 36

10000 271

1011 109

In general, as more patterns are added to a network, the average correlations will be

less likely to match the correlations in any particular pattern. Hence, the likelihood of

retrieval error will increase. Just as it happens in case of human memory. When the

information is loaded/crammed into a memory, or patterns to store recall is slower

Applications of Neural

Networks

42

than when there are less patterns to remember. The key to perfect recall is selective

ignorance!

Example 4: A three neuron network trained with three patterns.

Let’s say we’d like to train three patterns:

Pattern number one: () () ()A 1 B 1 C 1
O 1 O 1 O 1= − = − = −

Pattern number two: () () ()A 2 B 21 C 2
O 1 O 1 O 1= = − =−

Pattern number three: () () ()A 3 B 3 C 3
O 1 O 1 O 1= − = =

() () () () () () () () () ()

() () () () () () () () ()

1,1

1,2 A 1 B 1 A 2 B 2 A 3 B 3

1,3 A 1 C 1 A 2 C 2 A 3 C 3

W 0

W O O O O O O 1 1 1 1 1 1 1

W O O O O O O 1 1 1 1 1 1 3

=

= × + × + × = − × − + × − + − × = −

= × + × + × = − × + × − + − × = −

() () () () () () () () () ()

() () () () () () () () ()

2,2

2,1 B 1 A 1 B 2 A 2 B 3 A 3

2,3 B 1 C 1 B 2 C 2 B 3 C 3

W 0

W O O O O O O 1 1 1 1 1 1 1

W O O O O O O 1 1 1 1 1 1 1

=

= × + × + × = − × − + − × + × − =−

= × + × + × = − × + − × − + × =

() () () () () () () () ()

() () () () () () () () ()

3,3

3,1 C 1 A 1 C 2 A 2 C 3 A 3

3,2 C 1 B 1 C 2 B 2 C 3 B 3

W 0

W O O O O O O 1 1 1 1 1 1 3

W O O O O O O 1 1 1 1 1 1 1

=

= × + × + × = × − + − × + × − = −

= × + × + × = × − + − × − + × =

OA

OB

OC

1

2

3

W1,1

W1,2
W2,1

W3,1
W1,3

W2,2

W3,2 W2,3

W3,3

Hopfield Networks

43

Now try the following exercise.

E5) Train this network with the three patterns shown.

Patterns:

Applications of the Hopfield Network

1. The Hopfield network can be used as an effective interface between analog and

digital devices, where the input signals to the network are analog and the output

signals are discrete values.

2. Associative memory is a major application of the Hopfield network.

3. The energy minimization ability of the Hopfield network is used to solve

optimization problems.

4. The various applications of Hopfield networks are as given below. Hopfield

network remembers cues from the past and does not complicate the training

procedure.

5. The Hopfield network can be used for converting analog signals into the digital

format, for associative memory.

Now, let us summarize this unit.

9.7 SUMMARY

The summary of this unit includes the four basic operations to design and run a

Hopfield network. These four operations are–learning, initialization (of the network),

iteration until convergence, and finally outputting the output vector.

OA

OB

OC

1

2

3

W1,1

W1,2
W2,1

W3,1
W1,3

W2,2

W3,2 W2,3

W3,3

Applications of Neural

Networks

44

i) Learning/Training : Let 1 2 mp , p , , p… be the N-dimensional patterns to be

stored. Using the dot product rule, the Hebbian postulate of learning, the

synaptic weights of the entire recurrent network prohibiting self-looping is

computed by,

M

k,i k, j

i, j k 1

1
p p i j

w N

0 i j

=


≠

= 


=

∑

ii) Initialization: Let pt be the n-dimensional vector probe or the test input to the

Hopfield network. The initialization is carried out by,

 i i, ts (0) p , i 1, 2, , N= = …

 where is (0) is the state of the i-th neuron at time n 0= , and i, tp the i-th

element of the test input tp .

iii) Iteration until convergence: Update the elements of the state vector s(n)

synchronously or asynchronously using the rule,

N

i ij i

j 1

s (n 1) sgn w s (n) , i 1, 2, , N
=

 
+ = = 

  
∑ …

 Repeat the iteration until the state of the neurons do not change i.e. the state

vector s remains unchanged.

iv) Outputting: Let fixeds denote the stable states computed at the end of above

iterative step. The resulting pattern OP of the network is,

 fixedOP s=

 The storage phase uses the learning/training operation. The subsequent

operations initialization, iteration until convergence and outputting are applied

in the retrieval phase.

9.8 SOLUTIONS/ANSWERS

E1) This test pattern too has elements other than 1± . Using the Eqn. (4) or ptW

and dividing the resultant by 3 the vector obtained is (11 11)− . The

calculation is given as below.

Input = (1 0 0 0)

The corresponding graphical representation of the Hopfield network is given as

The synchronous iteration to update the nodes is given by

2

4 3

1

Hopfield Networks

45

()

3 1 1 1

1 3 1 1
1 0 0 0

1 1 3 3

1 1 3 3

− 
 

− 
 − −
 

− − 

()3 1 1 1= −

Nodes 1 2 3 4 Output

1 1 0 0 0 1

2 1/3 0 0 0 1

3 – 1/3 0 0 0 -1

4 1/3 0 0 0 1

Which is a stable state and one of the input patterns stored in the library.

Though the asynchronous update results in spurious output, the synchronous

update gives a pattern from the fundamental memory.

E2)

 Input Output

E3) First of all the input definitely has some serious noise therefore the value 0

which is not there in the input patterns is present in the probe. However, use the

Eqn. (4) or (11 0 0)=ptW , which is a stable state, but not one of the input

patterns stored in the library.

E4) Here N 10= and M 4= . Use either the Eqn. (6) or Eqn. (7) to obtain the

weights for each i, jw for all i and j 1, 2, , 10= … but i j≠ . Substitute the

values of
T

P and P in Eqn. (7) we get T
10CM 1/ 4P P 10I= − .

9.9 PRACTICAL ASSIGNMENT

Session 8

Write a program in ‘C’ language to find

i) The average correlation matrix for given input patterns M and N to design and

train the Hopfield Network.

ii) The weight matrix.

iii) Output of the Hopfield network.

Also test your program on the input patterns given in Example 2.

2

4 3

1 2

4 3

1

