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9.1 INTRODUCTION  

    

One of the most important functions of human brain is the laying down and recall of 

memories.  More over the studies in neurodynamics indicate the presence of short-

term and long-term memory.  The short-term memory contributes in processing 

routine tasks while long-term memory helps in storing the lesson from the past 

experience.  Our memories mostly function in a manner better termed as associative 

or content-addressable.  That is, a memory does not exist in some isolated fashion, 

located in a particular set of neurons.  All memories are in some sense strings of 

memories.  For example, we remember a place or a person by some event. Sometimes 

more than the facial features of a person it is the voice or the peculiarity of the name 

that impresses our memory. Thus, memories are stored in association with one 

another.  

 

The neural network researchers contend that there is a basic mismatch between the 

standard technology used by computers and the technology of the human brain for 

processing information.  Feed-forward neural networks are well studied for obvious 

reasons of simplicity in understanding and modelling the computation.  Feed forward 

network is acyclic.  The artificial neurons or the perceptrons in a feed-forward neural 

network model have no cyclic connections.  The input data is processed and passed to 

the outputs but not vive-versa.  

 

Recurrent networks can have connections that go back from the output nodes and can 
also have arbitrary connections between any nodes.  That is a recurrent neural network 

has at least one feedback loop.  For example, in a single layer recurrent network each 

neuron may have a feedback connection to each of the other neuron or it may even 

have self-feedback loops. 

 

As learning using perceptrons is a process of modifying the values of the synaptic 
weights and the threshold or the activation function using samples of training data.  A 

group of (connected) perceptrons are trained on sample input-output pairs until it 

learns to compute the correct function. Once a feed-forward network is trained, its 

state is fixed which is not altered by any subsequent input data until the network is 

retrained.  This indicates that a feed-forward neural network does not have memory.  

In a neurobiological context memory refers to “the relatively enduring neural 

alterations induced by the interaction of an organism with its environment”.  Learning 

tasks lead us to assume existence of memory.  Therefore, the alterations indicate 

presence of memory and for its usefulness memory needs to be accessible.  

 

Associative memories have a very faint similarity to that of the human brain’s ability 

to associate patterns.  The architecture of a neural network with associative memory 
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depends on its capability of association.  An associate memory is a storehouse of 

associated patterns encoded in some form.  When this storehouse is triggered or 

incited with a pattern the associated pattern pair is recalled or output.  An associative 

memory network is designed by storing/recording several ideal patterns into the 

network’s stable state.  When a pattern (even with noise or distorted representation of 

stored patterns) is input to the storehouse, the network is expected to reach one of the 

stored patterns and retrieve it as an output.  These neural network models are 

categorized as association models and are also known as content addressable or auto-

associative neural networks. All the definitions will be discussed in Sec. 9.2. In Sec. 

9.3 we shall discuss Hopfield networks. In Sec. 9.4, we shall discuss the structure of 

the Hopfield networks, in detail and we shall extend our discussion on the 

functionality of the Hopfield networks in Sec. 9.5.  The storage capacity of this 

network is discussed in Sec. 9.6. 

 

Objectives 
 

After reading this unit you should be able to:  

• identify and design general association and recurrent models of neural network;  

• model Hopfield networks; 

• train Hopfield networks for a given set of patterns; 

• give a trained network to run the Hopfield for a test pattern with noise may 

require rigorous computation specially if dimension of the vectors  is high. 

 

9.2  RELATED DEFINITIONS  
 

Let us recall various definitions as given below: 

 

Recurrent Networks: The interconnection scheme of the recurrent networks is 

feedback connection or loops as shown below in Fig. 1.  
  

 
   

                                               Fig. 1: Recurrent network 

 
Associative Memory: An associative memory is a brain-like distributed memory that 

learns by association.  Association is one of the basic features of the human memory 

and is prevalent in most models of cognition. Associative memory can be categorized 

as auto associative memory and Hetero associative memory. These are defined in the 

following: 

Input  

Output 
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i) Autoassociation: In autoassociation a neural network is required to store a set 

of patterns (vectors) by repeatedly presenting them to the network.  The 

network is subsequently presented a partial description or noisy version of an 

original pattern stored in it, and the task is to recall or more specifically retrieve 

that particular pattern.  

ii) Heteroassociation: In heteroassociation an arbitrary set of input patterns is 
associated (paired) with another set of arbitrary set of output patterns.  The task 

of retrieval of patterns however is similar i.e. on input of a stored pattern or a 

distorted version of the already stored pattern the original pattern coupled with 

the given input is recalled.  

 

Let 
kx  be the key pattern (vector) applied to an associative memory and 

ky  be the 

memorized pattern (vector).  The pattern association performed by the network is 

described by,  

 

 k kx y , k 1, 2, , q→ = …  

 

where q  is the number of patterns stored in the network.  The key pattern kx  acts as 

the stimulus that not only determines the storage location of the memorized pattern 

ky ,  but also holds the key for its retrieval.  

 

               

                    
  

Fig. 2: Input-output relation of the pattern associator 
 

Auto-associative networks consist of one layer of neural elements (units) that are all 

interconnected, although self-connections are usually disallowed.  The neural elements 

are nonlinear, with states bounded from zero to one – so called two-state-neurons.  

Any state, whether initial or desired, will be represented by some pattern of zeros and 

ones over the units.  Recurrence and nonlinearity lie at the heart of auto-associative 

network behaviour.  Recurrence allows desired states to emerge via interactions 

among the units, and the nonlinearity prevents the whole network from running away, 

and instead encourages the network to settle into a stable state.  The auto-associative 

network will, in most cases, relax from any initial state into the desired state closest to 

it. 

 

The interconnections between units can be trained according to Hebbian rules 

(proposed in 1949) - “when one cell repeatedly assists in firing another, the axon of 

the first cell develops synaptic knobs (or enlarges them if they already exist) in contact 

with the soma of the second cell.”  Hebbian rules are local, in the sense that they 

depend only upon the activity of neurons pre- and post-synaptic to any particular 

connection.  The original rule proposed by Hebb specified an increase in synaptic 

strength whenever pre- and post-synaptic neurons were active together.  

 

Therefore in an association net, if we compare two patterns components (vectors or 

pixels) within many patterns and find that they are frequently in the same state then 

the arc weight between the two perceptrons must be increased (should be positive) and 

if they are frequently in different states, then the arc weight between the two 

perceptrons must be decreased (should be negative).  

 

There are two phases involved in the operation of an associative memory:  

• Storage phase: This refers to the training of the network.  

Pattern 
Associator 

Input Vector x 
Output vector y 
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• Recall/Retrieval phase: This involves the retrieval of a memorized pattern in 

response to the presentation of a noisy or distorted version of a key pattern to 

the network. 

    

Matrix Representation: For the computation a matrix representation is a practical 

tool.  

 

Let X = matrix of input patterns, where each ROW is a pattern.   

 

So k, ix =  the i-th bit of the k-th pattern.   

 

Let Y = matrix of output patterns, where each ROW is a pattern.   So k, jy =  the j-th 

bit of the k-th pattern.  Then, average correlation between two input patterns i  and j  

across all patterns is:   

 

 i, j 1, i 1, j 2, i 2, j p, i p, jw 1/ P(x y x y x y )= + + +⋯       (1) 

 
All weights for an associative memory network model therefore can be calculated by 

the following:  

 

 TW X Y=         (2)

  

Therefore, for a set of input patterns: 1 2 pIP , IP , , IP… , and output patters 

1 2 pOP , OP , , OP… ,  

 

 

1 1,1 1,n

2 2,1 2,n

p p,1 p,n

IP x ... x

IP x ... x
X

: : : :

IP x ... x

 
 
 =
 
 
  
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1,1 1, j 1,n1

2,1 2, j ... 2,n2

p p,1 p, j ... p,n

y ... y ... yOP

y ... y yOP
Y

: : : :

OP y ... y y

 
 
 

=  
 
  

  

 

From the above sets of vectors (matrices) 
TX  and Y,  it is obvious that Eqn. (1) is the 

dot product of i-th row of TX  and the j-th column of Y .  But since the output  vector 

in case of autoassociation is one of the earlier memorized vectors it is one of vectors in 

X  itself and therefore the weight calculation autoassociation networks is,  

 

 TW X X=         (3) 
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Consider the following procedure to explain the associative memory network model.  

 

Input: Pattern (often noisy/corrupt) 

 

Output: Corresponding pattern (complete/relatively noise-free) 

 

Process:  

1. Load input pattern onto highly-interconnected neurons (a trained network on 

given set of library patterns). 

2. Run the neurons until they reach a steady state. 

3. Read output off the states of the neurons. 

 

Subsequently Fig. 3 and fig. 4 give a graphical illustration of the procedure.  

 

 

 
 

Now, let us discuss Hopfield networks in the following section. 

 

9.3  HOPFIELD NETWORKS 
 

The Hopfield Net proposed by J.J. Hopfield in 1982 is a neural network that is a lot 

simpler to understand than the Multi Layer Perceptron.  For a start, it only has one 

layer of nodes.  Unlike the MLP, it doesn't make one of its outputs go high to show 

which of the patterns most closely matches the input.  Instead it takes the input pattern, 

which is assumed to be one of the library patterns which has been changed or 

corrupted somehow, and tries to reconstruct the correct pattern from the input that you 

give it.  

Input  
Output 

Input: (1 0 1 -1 -1) 
Output: (1 -1 1 -1 -1) 

Fig. 3: Trained associative network 

Fig. 4: Running an input pattern 
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Hopfield networks are Recurrent neural network model that possesses auto-associative 

property.  Therefore the network is fully interconnected with the exception that no 

neuron has any connection to itself.  Thus, the Hopfield network is a form of artificial 

neural network that serve as content-addressable memory systems with binary 

threshold units.  They are guaranteed to converge to a stable state.  The aim of the 

Hopfield network is to recognize a partial or distorted input pattern as one of its 

previously memorized vectors and to output the perfect and complete memorized 

version. 

 

Thus the Hopfield networks proposed as a theory of memory has the following 

features: 

1. Distributed Representation: A memory is stored as a pattern of activation 

across a set of processing elements.  Further, the memories can be 

superimposed on one another; different memories are represented by different 

patterns over the same set of processing elements. 

2. Distributed Asynchronous Controls: Each processing element makes 

decisions based only on its own local situation.  All these local actions add up to 

a global solution. 

3. Content-addressable Memory: A number of patterns can be stored in a 
network.  To retrieve a pattern, we need to only specify a portion of it. The 

network automatically finds the closest match.  

4. Fault Tolerance: If a few processing elements misbehave or fails completely, 

the network will still function properly.  

 

The main concept underlying the Hopfield network is that a single network of 

interconnected, binary-valued neurons can store multiple stable states, the library 

patterns also called attractors, similar to the brain – the full pattern can be recovered if 

the network is presented with only partial information just as described in associative 

memories.   Furthermore, there is a degree of stability in the system, if just a few of 

the connections between neurons are severed, the recalled memory is not too badly 

corrupted, the network can respond with a "best guess".  The nodes in the Hopfield 

network are vast simplifications of real neurons, they can only exist in one of two 

possible "states" - {firing, not firing} or { }0, 1  or {1, 1}− .  Every node is connected 

to every other node with some strength (synaptic weights).  At any instant of time a 

node will change its state (i.e. start or stop firing) depending on the inputs it receives 

from the other nodes.  

 

If we start the system off with any general pattern of firing and non-firing nodes then 

this pattern will in general change with time.  To see this think of starting the network 

with just one firing node.  This will send a signal to all the other nodes via its 

connections so that a short time later some of these other nodes will fire.  These new 

firing nodes will then excite others after a further short time interval and a whole 

cascade of different firing patterns will occur.  One might imagine that the firing 

pattern of the network would change in a complicated perhaps random way with time.  
The crucial property of the Hopfield network which renders it useful for simulating 

memory recall is the following: it guarantees that the pattern will settle down after a 

long enough time to some fixed pattern.  Certain nodes will be always "on" and 

others "off".  Furthermore, it is possible to arrange that these stable firing patterns of 

the network correspond to the desired memories we wish to store. 

 

Example 1: Suppose we have trained our Hopfield Net on the three patterns given in 

fig. 5:  
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Fig. 5 
 

Next we input a pattern which is a bit like one of these, say the left most one given in 

the Fig. 6.  Leave the network to run.  It gradually alters the pattern we give it until it 

has reconstructed one of the originals ones, the right most one.   

 

 
 

Fig. 6    

 

The Hopfield Net is left to iterate (loop round and round) until it doesn't change any 

more.  Then it should match one of the input patterns.  The program should then 

compare the reconstructed pattern with the library of originals, and see which one 

matches. 

 

9.4 STRUCTURE OF HOPFIELD NETWORKS 
 

The structure of the Hopfield networks model is shown in Fig. 7. 

 

 

OUTPUTS (Valid after convergence)  

 
  INPUTS (Applied at time zero) 

  
Fig. 7: Hopfield Network Model 

 

The inputs to the Hopfield Net are at the bottom.  The nodes produce an output which 

comes out at bottom and is fed back into all the nodes except the one that produced it 

(i.e. all the nodes refer to each other, but not to themselves) and uses this to produce 

the next output.  The final output of the nodes is extracted at the top.   For a network 

of N neurons, the state of the network is denoted by the vector, 

 

 T
1 2 N(s , s , , s )=s …  

 

Each js 1= ± , the state of neuron j  represents the one bit of information, and the N 1×  

state vector s  represents a binary word of N  bits of information.  As the units/neurons 
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have a binary threshold units, the dynamical rule has the possibility of two definitions 

for 
ia  the activation of neuron i : 

   
ij j ij

i

1 if w s ,
a

1 otherwise.

 ≥ θ
= 

−

∑
       (4) 

or, 

          
ij j ij

i

1 if w s ,
a

0 otherwise.

 ≥ θ
= 


∑
      (5) 

 

where, ijw  is the connection (synaptic) weight from neuron i  to neuron j  as in    Eqn. 

(1), js  is the state of neuron (unit) j and iθ  is the threshold of the neuron i .  The 

above relation in Eqns. (4) and (5) may be written in the compact form, 

 

  i ij ja sgn[ w s ]= Σ  for all j 1, 2, ,N= …  

 

where, sgn  is the signum function.  If ia  is zero then the action can be arbitrary.  

However, the neuron I may remain in the previous state regardless of whether it is on 

or off.  The feedback network with no self-looping, Hopfield networks also have the 

following two restrictions on due to the kinds of interconnection that prevails:  

i) iiw 0=  for all neurons i . i.e. there is no loop/connection to itself, and  

ii) ij jiw w=  for all neurons. i.e. the connections are symmetric. 

 

The Hopfield nets also have a scalar value associated with each state of the network 

referred to as the energy, E  of the network.  Energy is defined as below, 

 

 ∑ ∑
<

+−=
ji i

iijiij ssswE θ        (6) 

 

The reason for this is somewhat technical but we can proceed by analogy.  Imagine a 

ball rolling on some bumpy surface.  We imagine the position of the ball at any instant 

to represent the activity of the nodes in the network.  Memories will be represented by 

special patterns of node activity corresponding to wells in the surface.  Thus, if the ball 

is let go, it will execute some complicated motion but we are certain that eventually it 

will end up in one of the wells of the surface.  We can think of the height of the 

surface as representing the energy of the ball.  We know that the ball will seek to 

minimize its energy by seeking out the lowest spots on the surface-the wells.  

 
In the language of memory recall, if we start/ initiate the network with a pattern for 

firing, the network must approximate one of the "stable firing patterns" in the 

memories.  However, it will "under its own steam" end up in a nearby (with respect to 

the threshold) well in the energy surface thereby recalling the original perfect memory.  

 

In the following section, we shall focus on the functionality of Hopfield networks. 
 

9.5  THE FUNCTIONALITY OF HOPFIELD 

NETWORKS  
 

As mentioned earlier that Hopfield nets are a special case of associative networks or 

content-addressable memory nets.  Therefore, Hopfield nets too have the 

corresponding two phases namely, Storage phase and the Retrieval phase.  
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Storage Phase: Let us have M, N-dimensional vectors to be stored in the Hopfield 

nets, say kP {p | k 1, 2, , M}= = … .  The m  vectors compose the library or the 

fundamental memories, representing the patterns to be memorized by the network.  

Let k, Ip  denote the i-th element of the fundamental memory kp .  According to the 

Hebb’s rule the synaptic weights from neuron i  to j  can be computed using          

Eqn. (1) i.e.  

 

 ij 1, i 1, j 2, i 2, j M, i M, jw 1/ N(p p p p p p )= + + +⋯       (7) 

 

and iiw 0=  for all neurons i 1, 2, ,M.= …  Let W  denotes the N N×  synaptic weight 

matrix or connectivity matrix of the network.  

 

  
M

T
k k

k

1
W p p MI

N
= −∑        (8) 

 

where, T
k kp p denoted the dot product of the k-th vector and its transpose.  I is the 

identity matrix.  From the above computation the following three points are 

reconfirmed: 

• The output of each neuron in the network is fed back to all other neurons. 

• There is no self-looping in the network. 

• The weight matrix of network is symmetric. 

 
Retrieval Phase: This phase is initiated on input of an N-dimensional vector as input 

say tp , to the trained network.  This is also called a probe.  Typically the probe has 

elements 1±  and is thought to be a noisy or incomplete version of any of the attractors 

already in the library/ fundamental memory.  The information retrieval starts with a 

dynamical rule in which each neuron i  of the network randomly but at some fixed rate 

examines its activation function ia  as a result of the connectivity its neighbouring 

neurons. While examining if ia  is greater than zero then the state is changed to 1 else 

remain in the previous state.  But if the value of ia  is less than zero then switch state 

to 1− .  However, if the value of ia  is equal to zero then the state is left in its previous 

state regardless of whether it was in on or off state.  The updating of the states of the 

neurons is deterministic but selection of the neurons for updating states is done 

randomly in serial (asynchronous) or synchronous.  Starting with the test input or the 

probe vector the network must finally reach a state of stability, or produce time 

invariant state vector as the output pattern i.e. y , whose individual elements satisfy 

the following stability condition, 
 

 
N

i j,i ti

i 1

y sgn w p , j 1, 2, , N
=

 
= = 

 
∑ … .     (9) 

 

or the matrix form,  

 

sgn( )= ty Wp         (10) 

 
Example 2: Consider the following example: 

 

i) Input Patterns M 3, N 4, 3= =  4-dimensional vector.  

 

IP1 1 1 1 –1 

IP2 1 1 –1 1 

IP3 – 1 1 1 –1 



 

 

Applications of Neural 

Networks 

38 
 

 

ii) The average correlation across the three patterns to design and train the 

Hopfield network. 

 

i, jw  IP1 IP2 IP3 Avg 

1,2w  1 1 –1 1/3  

1, 3w  1 –1 –1 –1/3 

1, 4w  –1 1 1 1/3 

2, 3w  1 –1 1 1/3 

2, 4w  –1 1 –1 –1/3 

3, 4w  –1 –1 –1 –1 

 

 

1 1 1 1

X 1 1 1 1

1 1 1 1

− 
 

= − 
 − − 

 

 

  T

1 1 1

1 1 1
X

1 1 1

1 1 1

− 
 
 =
 −
 
− − 

 

The weight for the auto association network is T

3 1 1 1

1 3 1 1
W X X

1 1 3 3

1 1 3 3

− 
 

− = =
 − −
 

− − 

  

 

Here it is clear that in the connectivity matrix 2, 4 4, 2w w=  or in general the 

lower and the upper triangles of the product matrix represents the 6  weights 

i, j j, iw w= .  We can scale the weights by dividing them by p 3= .  For the 

iterative purposes it is easier to scale by p  at the end instead of scaling the 

entire weight matrix W  prior to testing. Now let us construct the Hopfield net 

and training it with the inputs 1 2 3IP , IP , IP . 

 

 
 

 

 

 

[– 1/3] 

[+1/3] 

Fig. 8: Hopfield network 

1 
2 

4 3 

si = 0 for i =1, 2, 3, 4   
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iii) Now consider the testing input = (1 0 0 –1). 

 

 
 

iv) Synchronous iteration to update all the nodes. 

  

 

 

3 1 1 1

1 3 1 1
(1 0 0 1) (2 2 2 2)

1 1 3 3

1 1 3 3

− 
 

− − = −
 − −
 

− − 

 

 

Table 1 
 

Inputs 

Node 1 2 3 4 Output 

1 1 0 0 -1/3 1 

2 1/3 0 0 1/3 1 

3 -1/3 0 0 1 1 

4 1/3 0 0 -1 -1 

 

The diagonal represents the values from the input layer in the above table depicting 

the result of the synchronous iteration modeled by the preceding computation.  

 

Now scaling the output by dividing by p 3=  and using the threshold 0θ = , we obtain 

the vector (2 /3 2/ 3 2 /3 2/ 3) (111 1)− ⇒ −  the same as 1IP  an attractor in the library. 

Consider the following figure to display the processing in the Hopfield net to reach a 

stable state again with the output vector as computed earlier. The graphical 

representation of the output is given in Fig. 10. 

 
 

 

 

Fig. 10: (1 0 0 –1) →→→→ (1 1 1 –1) 

1 2 

4 3 

1 2 

4 3 

[- 1/3] 

[+1/3] 

Fig. 9: With input (1 0 0 –1) 

1 
2 

4 3 s1 = 1; s2 = 0; 

s3 = 0; s4 = -1 
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Now, try some exercises. 

 
 

E1)  Run the above Hopfield network for the test input vector (1 0 0 0) . 

 

E2) Draw the graph of the input to output vector obtained in E1). 
 

 

The smart thing about the Hopfield network is that there exists a rather simple way of 

setting up the connections between nodes in such a way that any desired set of patterns 

can be made "stable firing patterns".  Thus any set of memories can be burned into the 

network at the beginning.  Then if we kick the network off with any old set of node 

activity we are guaranteed that a "memory" will be recalled.  Not too surprisingly, the 
memory that is recalled is the one which is "closest" to the starting pattern.  In other 

words, we can give the network a corrupted image or memory and the network will 

"all by itself" try to reconstruct the perfect image.  Of course, if the input image is 

sufficiently poor, it may recall the incorrect memory–the network can become 

"confused"–just like the human brain.  We know that when we try to remember 

someone's telephone number we will sometimes produce the wrong one!  Notice also 

that the network is reasonably robust–if we change a few connection strengths just a 

little the recalled images are "roughly right".  We don't lose any of the images 

completely. 

 
Example 3:  Consider a Hopfield network whose weight matrix is given by, 

 

 

0 2 2
1

w 2 0 2
3

2 2 0

− 
 

= − − 
 − 

 

 

Consider a test input vectors 1pt (1 11)= −  and 2pt ( 11 1)= − − . 

 
Using the Eqn. (9) and then its transpose results in the desired vector.  

 

Therefore,  

0 2 2 1 4
1 1

2 0 2 1 4
3 3

2 2 0 1 4

−     
     

= − − − = −     
     −     

T

1Wpt   

 

  

1

Sgn ( ) 1

1

 
 

= = − 
  

1 1y Wpt  

Since the CM or the weight matrix is symmetric we can also directly get the vector as 

by the product of vector and the matrix, i.e.  ptW  

 

 

0 2 2
1

sgn ( ) ( 11 1) 2 0 2 ( 11 1)
3

2 2 0

− 
 

= = − − − − = − − 
 − 

2 2y pt W   

 

Eqn. (10) is also known as alignment condition.  The state vectors that satisfy the 

alignment condition are stable states.  Therefore, the given patterns are stables state 

vector too.  

 

If we consider the following vectors as probes for this example, ( 1 11), (1, 1, 1)− −  or 

(1 1 1)− − .  The resulting output is (1 11)− .  Note that each of the probes had single 

error compared to the stored memory. 
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Similarly, consider another set of test patterns to input to the Hopfield network 

(11 1), ( 1 1 1)− − − −  or ( 111)− .  The resulting output vector in this case is computed 

to be ( 11 1)− − .  In this case too the test patterns are noted to have single error.  

 

Now, try the following exercises. 

 
 

E3)  Run the Hopfield network of Example 2  for the test input vector (11 0 0) . 

Also, draw the graphical representation of the output. 

 

E4)  Consider the set of pattern vectors P . Obtain the connectivity matrix (CM) for 

the patterns in P  (four patterns).  

 

  

1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1
P

1 1 1 1 0 0 0 0 0 1

1 0 1 0 1 0 1 0 1 0

 
 
 =
 
 
 

 

 

 

In the following Section, we shall discuss the storage capacity Hopfield Networks. 

 

9.6  HOPFIELD NETWORKS: STORAGE CAPACITY 
 

There are two major limitations of Hopfield networks.  One is the tendency to local 

minima, which is good for association but bad for optimisation.  The other limitation 

is on the network capacity. For a network of N binary nodes, the capacity limit is of 

the order of N  rather than 
N

2 .   If the patterns or the vectors are N-dimensional then 

there must be network of N binary nodes.  

 

However, the capacity is equal to the relationship between the number of patterns that 

can be stored & retrieved without error to the size of the network.  Let M  be the 

number of patterns to be stored or fundamental memories.  So long as the storage 

capacity is of the network is not overloaded i.e., M  is small compared to N .  

 

 
M M

Capacity or,
N Number of weights

=                                            

                                                                                                                                                                                                                                                                                                                                                                                                                                

If we use the following definition of 100%  correct retrieval, when any of the stored 

patterns is entered completely (no noise), then that same pattern is returned by the 
network; i.e.  The pattern is a stable attractor.  A detailed proof shows that a Hopfield 

network of N  nodes can achieve 100%  correct retrieval on P  patterns if: 

P N /(4 *ln(N))< .  

N      Max P 

10 1 

100 5 

1000  36 

10000 271 

1011 109 

 

In general, as more patterns are added to a network, the average correlations will be 

less likely to match the correlations in any particular pattern.  Hence, the likelihood of 

retrieval error will increase.  Just as it happens in case of human memory.  When the 

information is loaded/crammed into a memory, or patterns to store recall is slower 
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than when there are less patterns to remember.  The key to perfect recall is selective 

ignorance! 

 

Example 4:  A three neuron network trained with three patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s say we’d like to train three patterns:  

 

Pattern number one:         ( ) ( ) ( )A 1 B 1 C 1
O 1 O 1 O 1= − = − = −  

 

Pattern number two:        ( ) ( ) ( )A 2 B 21 C 2
O 1 O 1 O 1= = − =−  

 

Pattern number three:        ( ) ( ) ( )A 3 B 3 C 3
O 1 O 1 O 1= − = =  

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1,1

1,2 A 1 B 1 A 2 B 2 A 3 B 3

1,3 A 1 C 1 A 2 C 2 A 3 C 3

W 0

W O O O O O O 1 1 1 1 1 1 1

W O O O O O O 1 1 1 1 1 1 3

=

= × + × + × = − × − + × − + − × = −

= × + × + × = − × + × − + − × = −

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2,2

2,1 B 1 A 1 B 2 A 2 B 3 A 3

2,3 B 1 C 1 B 2 C 2 B 3 C 3

W 0

W O O O O O O 1 1 1 1 1 1 1

W O O O O O O 1 1 1 1 1 1 1

=

= × + × + × = − × − + − × + × − =−

= × + × + × = − × + − × − + × =

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3,3

3,1 C 1 A 1 C 2 A 2 C 3 A 3

3,2 C 1 B 1 C 2 B 2 C 3 B 3

W 0

W O O O O O O 1 1 1 1 1 1 3

W O O O O O O 1 1 1 1 1 1 1

=

= × + × + × = × − + − × + × − = −

= × + × + × = × − + − × − + × =

 

 

 

 

 

OA 

OB 

OC 

1 

2 

3 

W1,1 

W1,2 
W2,1 

W3,1 
W1,3 

W2,2 

W3,2 W2,3 

W3,3 
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Now try the following exercise. 

 
 

E5)  Train this network with the three patterns shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patterns:     
 

 

 

 

 
 

 

Applications of the Hopfield Network 

1. The Hopfield network can be used as an effective interface between analog and 

digital devices, where the input signals to the network are analog and the output 

signals are discrete values. 

2. Associative memory is a major application of the Hopfield network. 

3. The energy minimization ability of the Hopfield network is used to solve 

optimization problems. 

4. The various applications of Hopfield networks are as given below. Hopfield 

network remembers cues from the past and does not complicate the training 

procedure. 

5. The Hopfield network can be used for converting analog signals into the digital 

format, for associative memory. 

 

Now, let us summarize this unit. 

 

9.7  SUMMARY 
 

The summary of this unit includes the four basic operations to design and run a 

Hopfield network.  These four operations are–learning, initialization (of the network), 

iteration until convergence, and finally outputting the output vector.  

OA 

OB 

OC 

1 

2 

3 

W1,1 

W1,2 
W2,1 

W3,1 
W1,3 

W2,2 

W3,2 W2,3 

W3,3 
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i) Learning/Training : Let 1 2 mp , p , , p…  be the N-dimensional patterns to be 

stored.  Using the dot product rule, the Hebbian postulate of learning, the 

synaptic weights of the entire recurrent network prohibiting self-looping is 

computed by,  

 

M

k,i k, j

i, j k 1

1
p p i j

w N

0 i j

=


≠

= 


=

∑  

ii) Initialization: Let pt be the n-dimensional vector probe or the test input to the 

Hopfield network. The initialization is carried out by, 

  i i, ts (0) p , i 1, 2, , N= = …  

 where is (0)  is the state of the i-th neuron at time n 0= , and i, tp  the i-th 

element of the test input tp . 

iii) Iteration until convergence: Update the elements of the state vector s(n)  

synchronously or asynchronously using the rule, 

  
N

i ij i

j 1

s (n 1) sgn w s (n) , i 1, 2, , N
=

 
+ = = 

  
∑ …  

 Repeat the iteration until the state of the neurons do not change i.e. the state 

vector s  remains unchanged.  

iv) Outputting: Let fixeds  denote the stable states computed at the end of above 

iterative step.  The resulting pattern OP  of the network is, 

 

  fixedOP s=  

 

 The storage phase uses the learning/training operation. The subsequent 

operations initialization, iteration until convergence and outputting are applied 

in the retrieval phase.  

 

9.8   SOLUTIONS/ANSWERS 
 

E1)  This test pattern too has elements other than 1± .  Using the Eqn. (4) or ptW   

and dividing the resultant by 3  the vector obtained is (11 11)− .  The 

calculation is given as below.  

 

Input = (1 0 0 0) 

 

The corresponding graphical representation of the Hopfield network is given as 
 

 

 

 

 

 

 

 

 

 

 

 

The synchronous iteration to update the nodes is given by 

2 

4 3 

1 
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( )

3 1 1 1

1 3 1 1
1 0 0 0

1 1 3 3

1 1 3 3

− 
 

− 
 − −
 

− − 

 

 

( )3 1 1 1= −  

  

Nodes 1 2 3 4 Output 

1 1 0 0 0 1 

2 1/3 0 0 0 1 

3 – 1/3 0 0 0 -1 

4 1/3 0 0 0 1 

 

Which is a stable state and one of the input patterns stored in the library.  

Though the asynchronous update results in spurious output, the synchronous 

update gives a pattern from the fundamental memory. 

 

E2)  

 

 

 

 

 

 

 

 
                                Input                                                                                  Output 

 

E3)  First of all the input definitely has some serious noise therefore the value 0  

which is not there in the input patterns is present in the probe. However, use the 

Eqn. (4)  or (11 0 0)=ptW , which is a stable state, but not one of the input 

patterns stored in the library.  

 

E4) Here N 10=  and M 4= .  Use either the Eqn. (6) or Eqn. (7) to obtain the 

weights for each i, jw  for all i  and j 1, 2, , 10= …  but i j≠ .  Substitute the 

values of 
T

P  and P  in Eqn. (7)  we get  T
10CM 1/ 4P P 10I= − .  

 

9.9 PRACTICAL ASSIGNMENT 
 

Session 8 
 
Write a program in ‘C’ language to find  

i) The average correlation matrix for given input patterns M and N to design and 

train the Hopfield Network. 

ii) The weight matrix. 

iii) Output of the Hopfield network. 

 

Also test your program on the input patterns given in Example 2. 

 

 

 

 

2 

4 3 

1 2 

4 3 

1 


