UNIT 5 POSITIVE DEFINITENESS

Structure
5.1 Introduction
Objectives
5.2 Spectral Decomposition
5.3 Positive Definite Operators
5.4 Summary
5.5 Solutions/Answers

5.1 INTRODUCTION

In Unit 4, you studied about normal operators, those operators on inner product spaces which commute with their adjoints. To help study such operators, we look at all their eigenvalues, and re-present the operators as a sum of projections on their eigenspaces. This is the spectral decomposition theorem, as you will see in Sec. 5.2. This, in fact, gives us a way of diagonalising these operators.

The next section, Sec. 5.3, is about those self-adjoint operators which have all their eigenvalues positive. Such operators are called positive definite operators, and have applications in diverse areas, some of which you will see in the course MMT-008, 'Probability and Statistics'.

Objectives

After reading this unit, you should be able to
- write the spectral resolution for normal operators and matrices;
- determine when a given operator/matrix is positive definite or positive semi-definite;
- use some basic properties of positive definite (semi-definite) operators/matrices.

5.2 SPECTRAL DECOMPOSITION

In this section we shall prove, and apply, the spectral decomposition theorem for normal operators. Recall that 'spectral' refers to the spectrum of a linear operator/matrix, which is its set of eigenvalues.

We first prove a few other results pertaining to normal operators. To start with, we shall use the Primary Decomposition Theorem (Theorem 3, Unit 2) to prove the following result.

Theorem 1: Let V be a finite-dimensional inner product space and let T be a triangulisable linear operator on V. Then T is normal if and only if V has an orthonormal basis consisting of eigenvectors of T.

Proof: First let us assume that T is normal. Let the minimal polynomial of T be \((t - \lambda_1)^{m_1} \cdots (t - \lambda_k)^{m_k}\), where \(\lambda_1, \ldots, \lambda_k\) are the distinct eigenvalues of T. By the primary decomposition theorem,

\[V = \text{Ker}(T - \lambda_1) \oplus \cdots \oplus \text{Ker}(T - \lambda_k)^{m_k}. \]

Since T is normal, so is \((T - \lambda_i)\) for each \(i = 1, \ldots, k\). Therefore, by Theorem 5, Unit 4,

\[\text{Ker}(T - \lambda_i)^{m_i} = \text{Ker}(T - \lambda_i). \]

Therefore,
Applications of Unitary Matrices

Let B be an orthonormal basis of $\text{Ker}(T - \lambda_iI)$. Then, it follows from Theorem 5, Unit 4, that $B = B_1 \cup \ldots \cup B_k$ is an orthonormal basis of V consisting of eigenvectors of T.

Conversely, let $B = \{x_1, \ldots, x_n\}$ be an orthonormal basis of V consisting of eigenvectors of T. Then, for each i, $Tx_i = \mu_i x_i$. (Note that μ_1, \ldots, μ_n need not be distinct.) Now, take $v \in V$. Then $v = \sum_{i=1}^n \alpha_i x_i$ for $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$.

So $(T^*T)v = T^* \left(\sum_{i=1}^n \alpha_i T x_i \right) = T^* \left(\sum_{i=1}^n \alpha_i \mu_i x_i \right) = \sum_{i=1}^n \alpha_i \mu_i \overline{\mu_i} x_i = (TT^*)v$.

Hence $TT^* = T^*T$, that is, T is normal.

What this theorem tells us is that "if T is a normal operator on V, then V has an orthonormal basis with respect to which the matrix of T is diagonal".

Let us, now, use this result for proving the main theorem of this section.

Theorem 2 (Spectral Decomposition Theorem): Let T be a normal operator on a finite-dimensional inner product space V over \mathbb{C}, with eigenvalues $\lambda_1, \ldots, \lambda_k$ and corresponding eigenspaces W_1, \ldots, W_k. Then $T = \lambda_1 P_1 + \ldots + \lambda_k P_k$, where P_i is the orthogonal projection of T on W_i.

Proof: Since T is normal, it is diagonalisable. Therefore, the minimal polynomial of T is $m(t) = (t - \lambda_1) \ldots (t - \lambda_k)$.

Let $\frac{1}{m(t)} = \frac{a_1}{(t - \lambda_1)} + \cdots + \frac{a_k}{(t - \lambda_k)}$, as a sum of partial fractions, where $a_1, \ldots, a_k \in \mathbb{C}$.

Then $1 = a_1 m_1(t) + \cdots + a_k m_k(t)$, ...(1)

where $m_i(t) = (t - \lambda_i) \ldots (t - \lambda_{i-1}) (t - \lambda_{i+1}) \ldots (t - \lambda_k)$, $i = 1, \ldots, k$.

Now, let $P_i = a_i m_i(T)$ for $i = 1, \ldots, k$. Then each P_i is a linear operator on V. Since each P_i is a polynomial in T, P_i and P_j commute. Now, from (1) it follows that $I = P_1 + \cdots + P_k$.

Also, for $i \neq j$, $P_i P_j = a_i a_j m_i(T)m_j(T) = a_i a_j m_i(T)m_j(T) = 0$, since $m(t)$ divides $m_i(t)m_j(t)$. It follows that $P_i = P_i (P_1 + \cdots + P_k) = P_i^2$, that is, P_i is an orthogonal projection of V onto $\text{Ker}(T - \lambda_i I)$.

(Remember that $V = \text{Ker}(T - \lambda_1 I) \oplus \cdots \oplus \text{Ker}(T - \lambda_k I)$.)

$T P_i = (T - \lambda_i I) P_i + \lambda_i P_i = \lambda_i P_i$, since $(T - \lambda_i I) P_i = a_i m(T) = 0$. Therefore, $T = T P_1 + \cdots + P_k = \lambda_1 P_1 + \cdots + \lambda_k P_k$.

Hence we have shown that if T is unitarily diagonalisable, then $T = \lambda_1 P_1 + \cdots + \lambda_k P_k$, where P_1, \ldots, P_k are linear operators on V such that $P_1 + \cdots + P_k = I$, $P_i^2 = P_i$, and $P_i P_j = 0$.

This theorem is the basis of spectral theory, initiated by the great German mathematician David Hilbert. It is really a generalisation of finding the principal axes of an ellipsoid.

Let us also look at the matrix version of this theorem.
Theorem 3 (Spectral decomposition): Let \(A \in M_n(C) \) be normal, with eigenvalues \(\lambda_1, \ldots, \lambda_n \) and an orthonormal basis of eigenvectors \(\{v_1, \ldots, v_n\} \). Then

\[
A = \sum_{i=1}^{n} \lambda_i v_i v_i^*.
\]

Proof: Let us write \(E_{ij} \) for an \(n \times n \) matrix whose \((i, j)\) -th entry is 1 and all other entries are 0. You should verify that \(E_{ij} = e_i e_j^* \).

Let \(A \) be an \(n \times n \) normal matrix and \(U \) be a unitary matrix such that \(U^* A U = \text{diag}(\lambda_1, \ldots, \lambda_n) \). Let the \(j \)th column of \(U \) be \(u_j \). Then

\[
A = U \text{diag}(\lambda_1, \ldots, \lambda_n) U^* = U \left(\sum_{i=1}^{n} \lambda_i U e_i e_i^* \right) U^* = \sum_{i=1}^{n} \lambda_i \left(U e_i \right) \left(U e_i \right)^* U^*.
\]

The matrices \(P_1, \ldots, P_n \) are the projection matrices, and satisfy the following properties:

i) For each \(i \), \(P_i^2 = P_i \), and for \(i \neq j \), \(P_i P_j = 0 \).

\[
\begin{pmatrix}
0 & \text{if } i \neq j \\
I & \text{if } i = j
\end{pmatrix}
\]

(because \(P_i P_j = (U e_i)^* (U e_j) (U e_j)^* = \text{UE}_{i} E_{j} U^* = \begin{pmatrix} 0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{pmatrix} \).

ii) \(P_1 + \cdots + P_n = I_n \).

\[
U(ue_1)U^* + \cdots + U(ue_n)U^* = U e_1 e_1^* U^* + \cdots + U e_n e_n^* U^* = U e_1 e_1^* U^* + \cdots + U e_n e_n^* U^* = U I_n U^* = U U^* = I_n.
\]

Thus, (2) is the spectral decomposition of \(A \).

Let us see how a spectral decomposition is actually obtained.

Example 1: Write the spectral decomposition of the self-adjoint operator on \(C^3 \) whose matrix representation with respect to the standard basis is given by

\[
A = \begin{bmatrix}
4 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 4
\end{bmatrix}
\]

Solution: The eigenvalues of \(A \) are 3, 4, 6. An orthonormal basis of eigenvectors is

\[
\begin{bmatrix}
1 \\
\sqrt{3} \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
\sqrt{2} \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
\sqrt{6}
\end{bmatrix}
\]

So \(A = \frac{3}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + \frac{4}{2} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} + \frac{6}{6} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \)
Applications of Unitary Matrices

So, the spectral decomposition is

\[A = 3P_1 + 4P_2 + 6P_3, \text{ where } P_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad P_2 = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \]

\[P_3 = \frac{1}{6} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}. \]

You should verify that \(P_1 + P_2 + P_3 = I_3 \).

Example 2: Write the spectral decomposition of the operator

\(T : \mathbb{R}^3 \to \mathbb{R}^3 : T(x, y, z) = (6x - 2y - z, -2x + 6y - z, -x - y + 5z). \)

Solution: The matrix of \(T \) is \(\begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix} \). The eigenvalues of \(T \) are 3, 6, 8.

So, the minimum polynomial of \(T \) is \(m(t) = (t - 3)(t - 6)(t - 8) \).

Now, \(\frac{1}{m(t)} = \frac{1}{15(t - 3)} - \frac{1}{6(t - 6)} + \frac{1}{10(t - 8)}. \)

So \(1 = \frac{1}{15} (t - 6)(t - 8) - \frac{1}{6} (t - 3)(t - 8) + \frac{1}{10} (t - 3)(t - 6). \)

Take \(P_1 = \frac{1}{15} (A - 6I)(A - 8I) = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \)

\[P_2 = -\frac{1}{6} (A - 3I)(A - 8I) = \frac{1}{6} \begin{bmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{bmatrix}, \]

\[P_3 = \frac{1}{10} (A - 3I)(A - 6I) = \frac{1}{2} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \]

Then \(T = 3P_1 + 6P_2 + 8P_3 \) is the spectral decomposition.

Example 3: Write the spectral decomposition for \(A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{bmatrix} \).

Solution: Let \(U = \begin{bmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \). Then \(U^*AU = \text{diag}(3, 1, 3) \).

Now \(u_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \quad \text{and } u_3 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}. \)

Thus, \(P_1 = u_1u_1^* = E_{22}, \quad P_2 = u_2u_2^* = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \) and \(P_3 = u_3u_3^* = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \).

Hence, the spectral decomposition of \(A = 3P_1 + P_2 + 3P_3 \).
Now try some exercises.

E1) Write the spectral decomposition of the linear operator on \mathbb{C}^3 whose matrix

decomposition with respect to the standard basis is given by $A = \begin{bmatrix} 5 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 1 \end{bmatrix}$.

\[
\begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}
\]

E2) Construct a spectral decomposition of

E3) Write the spectral decomposition for

\[
\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}
\]

We now look at those linear operators (and matrices) that play a role in functional analysis which is somewhat analogous to the role played by positive real numbers in classical analysis.

5.3 POSITIVE DEFINITE OPERATORS

Recall that a linear operator T on an inner product space is called self-adjoint or hermitian if $T^* = T$. Now, if T is hermitian, and λ is an eigenvalue of T with $Tx = \lambda x$, $x \neq 0$, then

$\lambda <x,x> = <Tx,x> = <x,T^*x> = <x,Tx> = \bar{\lambda} <x,x>$.

$(\lambda - \bar{\lambda}) <x,x> = 0 \Rightarrow \lambda = \bar{\lambda} \Rightarrow \lambda$ is real.

So, a hermitian linear operator has real eigenvalues only.

We now look at those self-adjoint operators which have positive eigenvalues or non-negative eigenvalues. You would be using such operators while doing multivariate analysis in many mathematical models. Let us define them formally.

Definition: A self-adjoint operator T on a vector space V is called

i) **positive definite** if $<Tx,x> > 0$ for all $x \neq 0$.

ii) **positive semi-definite** if $<Tx,x> \geq 0 \forall x \in V$.

iii) **negative definite** if $<Tx,x> < 0 \forall x \neq 0$.

iv) **indefinite** if T is neither positive nor negative semi-definite.

Can you think of some obvious examples? The identity operator is positive definite, and the zero operator is positive semi-definite. $-I$ is negative definite. You can think of other examples, and you will see more as you go through this section.

As always, we have analogous definitions for positive (or negative) definite and semi-definite matrices. Can you guess what they are? Here's an exercise about this.

E4) Define positive definite and positive semi-definite matrices. Also give one example of a positive semi-definite matrix, which is not positive definite, with justification.
Positive definite matrices have considerable theoretical and computational applications. They are used, for instance, in optimisation algorithms and linear regression models.

Notation: We denote 'T is a positive definite (semi-definite) operator' by $T > 0$ ($T \geq 0$). Similar notation is used for positive definite/semi-definite operators and matrices.

Let us now consider some properties of positive definite and positive semi-definite operators and matrices.

Theorem 4: Let T be a self-adjoint operator on a finite-dimensional inner product space V. The following statements are equivalent.

i) T is positive definite.

ii) All eigenvalues of T are positive.

iii) There is a unique positive definite operator S such that $T = S^2$. (This operator S is called the square root of T.)

iv) There is an invertible linear operator R such that $T = R^*R$.

Proof:

(i) \Rightarrow (ii): If λ is an eigenvalue of T, then you already know that λ is a real number. Now, if x is an eigenvector corresponding to λ, then $<Tx, x> > 0 \Rightarrow \lambda < x, x > > 0 \Rightarrow \lambda > 0$.

(ii) \Rightarrow (i): Since all the eigenvalues of T are real and T is self-adjoint, by Theorem 2, Unit 4, it follows that T is diagonalisable. So, V has an orthonormal basis consisting of eigenvectors of T. Let $B = \{x_1, \ldots, x_n\}$ be such a basis. Then $Tx_i = \mu_i x_i$, where $\mu_i > 0$. (Note that the μ_is need not be distinct.) For $x \neq 0$, write $x = \sum_{i=1}^{n} \alpha_i x_i$, α_i being scalars and not all $\alpha_i = 0$.

Then, $<Tx, x> = \left(\sum_{i=1}^{n} \alpha_i \bar{\alpha}_i \mu_i \right) = \sum_{i=1}^{n} \alpha_i \bar{\alpha}_i \mu_i < x_i, x_i > = \sum_{i=1}^{n} \mu_i |\alpha_i|^2$, since $\{x_i\}_i$ is an orthonormal set.

Hence $<Tx, x> > 0 \forall x \neq 0$.

(ii) \Rightarrow (iii): If $T = \lambda_1 P_1 + \cdots + \lambda_k P_k$ is the spectral resolution of T, then $\lambda_i > 0$ and $S = \sqrt{\lambda_1} P_1 + \cdots + \sqrt{\lambda_k} P_k$ is a self-adjoint operator with all its eigenvalues positive. So, by the equivalence of (i) and (ii), it follows that S is a positive definite operator. Also, $S^2 = T$.

The uniqueness of S requires some more background. So, we will not be proving it here.

(iii) \Rightarrow (iv): Take $R = S$. Then R is invertible and $T = R^*R$.

(iv) \Rightarrow (i): Let $T = R^*R$. Then T is self-adjoint. Also, for any $x \neq 0$,

$<Tx, x> = <R^*Rx, x> = <Rx, Rx> = ||Rx||^2 > 0$.

Hence T is positive definite.
A similar characterisation holds for positive semi-definite operators, which we state below. The proof is left as an exercise.

Theorem 5: Let T be a self-adjoint operator on a finite-dimensional inner product space V. The following statements are equivalent.

i) T is positive semi-definite.

ii) All eigenvalues of T are non-negative.

iii) There is a unique positive semi-definite operator S such that $T = S^2$. (This operator S is called the square root of T.)

iv) There is a linear operator R such that $T = R^* R$.

As before, you can reword the properties in Theorems 4 and 5 for positive definite and positive semi-definite matrices. The results are given below.

Theorem 6: Let $A \in \mathbf{M}_n(\mathbb{C})$ be a hermitian matrix. Then the following are equivalent:

i) A is positive definite (positive semi-definite, respectively).

ii) All the eigenvalues of A are strictly positive (non-negative, respectively).

iii) $A = S^2$ for a unique positive definite (positive semi-definite, respectively) matrix S.

iv) $\exists B \in \mathbf{M}_n(\mathbb{C})$ s.t. $A = B^* B$, where B is non-singular (B need not be non-singular, respectively).

The proof of Theorem 6 is along the same lines as the proof for Theorem 4.

Let us do a related example now.

Example 4: Find the square root of $A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$, given in Example 1, Unit 4.

Solution: The spectral resolution of A is $A = 3P_1 + 4P_2 + 6P_3$, where

$$P_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \text{ and } P_3 = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ -1 & 0 & 1 \end{bmatrix}.$$

Therefore, the square root of A is $\sqrt{A} = \sqrt{3}P_1 + 2P_2 + \sqrt{6}P_3$

$$= \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2} + \sqrt{6} + 1 & \sqrt{2} - \sqrt{2} - \sqrt{6} + 1 \\ \sqrt{2} - \sqrt{2} - \sqrt{2} - \sqrt{2} - \sqrt{6} + 1 \\ \sqrt{2} - \sqrt{2} - \sqrt{2} + \sqrt{2} + \sqrt{6} + 1 \end{bmatrix}.$$

Try some exercises now.

E5) Prove Theorems 5 and 6.
E6) Find the square root of \[
\begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{bmatrix}
\].

E7) Show that every positive definite operator/matrix is invertible.

E8) Is the inverse of a positive definite operator/matrix also positive definite? Give reasons for your answer.

Let us now consider another property that characterises positive definite matrices. This uses the concept of minors of a matrix. You would recall that if \(A \) is an \(n \times n \) matrix, a **principal minor** of \(A \) of size \(k \) is the determinant of the \(k \times k \) sub-matrix of \(A \) which is obtained from \(A \) by taking any \(k \) rows and the same \(k \) columns.

For example, if \(A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 1 \\ 4 & 1 & 2 \end{bmatrix} \), a principal minor of size 2 is \(\det \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = -1 \), which is obtained by taking the first two rows and columns. Another principal minor of size 2 of \(A \) is \(\det \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 8 \), obtained by taking the 2\(^{nd}\) and 4\(^{th}\) rows as well as the 2\(^{nd}\) and 4\(^{th}\) columns of \(A \).

If we take the minor formed by the first \(k \) rows and \(k \) columns of \(A \), we get its **leading principal minor** of size \(k \). For instance, \(\det[I] \), \(\det \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \) and

\[
\det \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 1 \end{bmatrix}
\]

are the leading principal minors of \(A \) of sizes 1, 2 and 3, respectively.

We now use the principal minors of positive definite matrices to give useful characterisations, **without proof**.

Theorem 7: Let \(A \) be a hermitian \(n \times n \) matrix. Then

i) \(A \) is positive definite if and only if all its principal minors are positive.

ii) \(A \) is positive semi-definite if and only if all its principal minors are non-negative.

iii) \(A \) is positive definite if and only if all its leading principal minors are positive.

Using this result we can see that the matrix \(A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix} \) is not positive definite, because its leading principal minor of size 2, \(\det \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = -1 \).
Note: It is not true that A is positive semi-definite if all its leading principal minors are non-negative. For instance, take $A = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$. Then both its leading principal minors are 0, but the matrix is not positive semi-definite.

Let us now consider some useful properties of positive definite matrices.

Theorem 8 (Cholesky decomposition): A is positive definite iff $A = BB^*$ for some non-singular lower triangular matrix B.

Proof: Firstly, if $A = BB^*$, by Theorem 6 (iv), A is positive definite. Conversely, if A is positive definite, then in the process of diagonalising A, we get $A = LDL^*$, where L is a lower triangular matrix and D is diagonal. Take $B = L \sqrt{D}$. Then B is non-singular and lower triangular, and $A = BB^*$.

The Cholesky decomposition is very useful for solving systems of linear equations, and is twice as efficient as the LU decomposition you have studied in your undergraduate Numerical Analysis course. It is commonly used in the Monte Carlo method for simulating systems with multiple correlated variables.

Theorem 9 (Hadamard's Inequality):

i) For a positive definite $n \times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, $\det A \leq a_{11} a_{22} \ldots a_{nn}$.

ii) For any $n \times n$ matrix $B = \begin{bmatrix} b_{ij} \end{bmatrix}$, $|\det B|^2 \leq \prod_{i=1}^{n} \left(\sum_{j=1}^{n} |b_{ij}|^2 \right)$.

Proof: i) We prove it by induction on n. If $n = 1$, then $\det A = a_{11}$, and the statement is true.

Assume that it is true for $n = m$. Now take A to be an $(m+1) \times (m+1)$ matrix.

Write $A = \begin{bmatrix} A_1 & x \\ x^t & a_{m+1,m+1} \end{bmatrix}$, where $x = \begin{bmatrix} a_{m+1,1} \ldots a_{m+1,m} \end{bmatrix}^t$.

Note that A_1 is also positive definite, and so $\det A_1 \leq a_{11} \ldots a_{mm}$.

Define $\alpha = \begin{bmatrix} I_m & 0 \\ -x^t A_1^{-1} & 1 \end{bmatrix}$. Then $\det \alpha = 1$.

Also $\alpha A = \begin{bmatrix} A_1 & x \\ 0^t & a_{m+1,m+1} - x^t A_1^{-1} x \end{bmatrix}$.

So $\det A = \det \alpha A = \det A_1 (a_{m+1,m+1} - x^t A_1^{-1} x)$

$\leq a_{m+1,m+1} \det A_1$, since A_1^{-1} is also positive definite.

$= a_{11} a_{22} \ldots a_{m+1,m+1}$.

Hence the statement (i) is true for all $n \in \mathbb{N}$.

ii) If $\det B = 0$, the statement is trivially true.

If $\det B \neq 0$, $A = B^*B$ is positive definite. Now, applying (i) to this A, we get the result.

Remark: From your earlier studies, you know that $|\det B|$ represents the volume of an n-dimensional solid whose rows are given by the row vectors that form the rows of B. So, Hadamard's inequality tells us that this volume is less than or equal to the volume of the n-dimensional rectangular solid whose sides have the same lengths.
Applications of Unitary Matrices

Some exercises now.

E9) For which values of \(x \in \mathbb{C} \) will
\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & x \\
1 & \bar{x} & 1
\end{bmatrix}
\]
be positive semi-definite?

E10) Check if
\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 2 & -1 \\
0 & -1 & -1
\end{bmatrix}
\]
is positive semi-definite. Is this matrix positive definite? Why?

E11) Show that
\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
is positive semi-definite. Also find its square root.

E12) Let \(A \) be an \(n \times n \) positive definite matrix. Let \(\lambda_0 \) and \(\lambda_1 \) be the minimum and the maximum eigenvalues of \(A \). Show that for any \(x \in \mathbb{C}^n \) such that \(x^*x = 1, \lambda_0 \leq x^*Ax \leq \lambda_1 \).

(Hint: Let \(U \) be unitary such that \(U^*AU \) is a diagonal matrix, \(\text{diag}(\mu_1, \ldots, \mu_n) \). Write \(y = Ux \). Then \(y^*y = 1 \) and \(x^*Ax = \sum_{i=1}^n \mu_i |y_i|^2 \).)

You will be studying some more about positive definite and semi-definite operators in MMT-008. Let us now end this unit with a look at the points covered in it.

5.4 SUMMARY

In this unit we have discussed the following points.

1. Spectral Decomposition Theorem:

 i) If \(T \) is a normal operator on \(\mathbb{C}^n \) with distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \) and corresponding eigenspaces \(W_1, \ldots, W_k \), then \(T = \sum_{i=1}^k \lambda_i P_i \), where \(P_i \) is the orthogonal projection of \(T \) on \(W_i \).

 ii) (Matrix analogue) If \(A \in M_n(\mathbb{C}) \) is normal with eigenvalues \(\lambda_1, \ldots, \lambda_n \) and an orthonormal basis of corresponding eigenvectors \(\{v_1, \ldots, v_n\} \), then
\[
A = \sum_{i=1}^n \lambda_i v_i v_i^*.
\]

2. The definition, and some properties, of positive and negative definite/semi-definite linear operators and matrices.

3. \(T \) is a positive definite (semi-definite) linear operator iff all its eigenvalues are positive (non-negative).

Analogous properties are true for matrices.
4. A ∈ M_n(C) is positive definite (semi-definite) iff all its principal minors are positive (non-negative).

5. A ∈ M_n(C) is positive definite iff all its leading principal minors are positive.

6. The Cholesky decomposition: A ∈ M_n(C) is positive definite iff A = LL*, where L is a non-singular lower triangular matrix.

7. Hadamard's Inequality: If A = [a_{ij}] is positive definite, then
\[
\det A \leq a_{11}a_{22} \ldots a_{nn}.
\]

5.5 SOLUTIONS/ANSWERS

E1) The eigenvalues of A are -2, 3, 6.

The unit eigenvectors corresponding to these eigenvalues are
\[
u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad u_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \quad u_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix},
\]
respectively.

Then the spectral decomposition of A is
\[-2u_1^Tu_1 + 3u_2^Tu_2 + 6u_3^Tu_3 = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}.
\]

E2) The eigenvalues of the matrix (say A) are 7, 7, -2.

It has the linearly independent (l.i) eigenvectors as
\[
v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \quad v_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}.
\]

Now, note that these are l.i but not orthonormal. Here v_1 ⊥ v_1 and v_3 ⊥ v_2, but v_1 is not orthogonal to v_2. So, we use the Gram-Schmidt process to obtain an orthonormal basis of W, corresponding to \{v_1, v_2\}.

This is \{w_1, w_2\}, where w_1 = v_1, and w_2 = \frac{1}{\sqrt{18}} \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}.

Then an orthonormal basis of eigenvectors is \{w_1, w_2, v_3\}.

So the spectral decomposition of A is 7w_1^Tw_1 + 7w_2^Tw_2 - 2v_3^Tv_3.

You can calculate this and verify that the sum is A.

E3) From Example 3, Unit 4, the eigenvalues are 5, 2, 2.

The corresponding set of linearly independent eigenvectors are
\[
\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.
\]
Applications of Unitary Matrices

These are not orthonormal. To orthonormalise them, we apply the Gram-Schmidt process to the basis of W_2. Then we get the vectors as

$$u_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad u_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ -1 \\ 1 \end{bmatrix}.$$

Then the spectral decomposition for the matrix is $5u_1^*u_1 + 2u_2^*u_2 + 2u_3^*u_3$.

E4) An $n \times n$ Hermitian matrix A is called
i) positive definite if $x^*Ax > 0 \ \forall x \neq 0, \ x \in \mathbb{C}^n$.
ii) positive semi-definite if $x^*Ax \geq 0 \ \forall x \in \mathbb{C}^n$.

An example is $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Here $x^*Ax = x_1^2 \geq 0 \ \forall \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{C}^2$.

This is not positive definite since $x^*Ax = 0$ for $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

E5) The proof of Theorem 5 is on the same lines as that of Theorem 4, replacing $' > 0'$ by $' \geq 0'$.

Similarly, you can follow the matrix version of the proof of Theorem 4 to get the proof of Theorem 6.

E6) Its eigenvalues are $4, 1, 1$.

Accordingly, (as in E3) the spectral resolution is $4u_1^*u_1 + u_2^*u_2 + u_3^*u_3$.

where $u_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad u_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ -1 \\ 1 \end{bmatrix}$.

Hence, S^2 is the given matrix.

E7) Let T be a positive definite operator on V. Since all its eigenvalues are positive, the constant term in its characteristic equation is non-zero. Hence, by the Cayley-Hamilton theorem, T is invertible.

E8) Firstly, since A is Hermitian, so is A^{-1}.

Next, if $A > 0$, then $A^{-1} > 0$

This is because λ is an eigenvalue of A^{-1}

iff λ^{-1} is an eigenvalue of A

iff $\lambda^{-1} > 0$

iff $\lambda > 0$.

38
E9) \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & x \\
1 & \bar{x} & 1
\end{pmatrix}
\Rightarrow
x + \bar{x} - x\bar{x} - 1 \\
So, the matrix is psd iff \(x + \bar{x} - x\bar{x} - 1 \geq 0 \)

i.e., iff \((a - 1)^2 + b^2 \leq 0\), where \(x = a + ib \)

i.e., iff \(a = 1, b = 0 \).

i.e., iff \(x = 1 \).

E10) \(|A| = -2\). So, by Theorem 7, A is neither pd nor psd.

E11) By E9, it is psd. Its sq. root is \(S = \sqrt{3} u_i u_i^* \), where \(u_i = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \frac{1}{\sqrt{3}} \\ 1 \end{pmatrix} \).

You should verify it by actually checking that \(S^2 = I \).

E12) \(A = U^* D U \), where \(U \) is unitary, \(D = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n) \), where the \(\mu_i \)s are the eigenvalues of \(A \).

So \(\lambda_0 \leq \mu_i \leq \lambda_1 \ \forall \ i = 1, \ldots, n \).

Now \(x^* Ax = y^* Dy \), where \(y = Ux \)

\[
= \sum_{i=1}^{n} \mu_i |y_i|^2
\]

\[
\leq \lambda_1 \sum_{i=1}^{n} |y_i|^2
\]

\[
= \lambda_1 y^* y
\]

\[
= \lambda_1, \text{ since } y^* y = x^* U^* Ux = 1.
\]

Similarly, you can show that \(\lambda_0 \leq x^* Ax \).