UNIT 2 INTERACTION OF EMR WITH EARTH AND ATMOSPHERE

Structure

2.1 Introduction
 Objectives

2.2 Energy-Atmosphere Interaction
 Refraction
 Scattering
 Absorption

2.3 Energy-Earth Interaction
 Reflection
 Transmission

2.4 Important Terminologies
 Radiant Energy
 Radiant Flux
 Radiant Intensity
 Irradiance and Exitance
 Radiance
 Albedo

2.5 Activity

2.6 Summary

2.7 Unit End Questions

2.8 References

2.9 Further/Suggested Reading

2.10 Answers

2.1 INTRODUCTION

In the previous unit, you have studied about history and processes of remote sensing and electromagnetic energy and its properties. You have also studied about the models of electromagnetic radiation (EMR). Now you know that EMR is the basis of remote sensing and most of the remote sensing sensors use Sun’s energy (radiation) for collecting information about objects on the Earth’s surface. Sensors record the radiation coming from the Sun after interacting with the atmosphere and the Earth’s surface. Particles and gases in the atmosphere can affect the incoming light or radiation. The radiation reaching the remote sensor is modified significantly because of the processes taking place in the atmosphere and the Earth’s surface. This unit discusses in detail about how these radiations interact in the atmosphere and at the Earth’s surface. An account of the important terminologies used in remote sensing is also given.

Objectives

After studying this unit you should be able to:

• explain the interaction of EMR with atmosphere;
Introduction to Remote Sensing

- describe how absorption and scattering together attenuate the electromagnetic radiation through different mechanisms;
- discuss atmospheric windows and their importance; and
- describe how the radiation interacts with the Earth’s surface.

2.2 ENERGY-ATMOSPHERE INTERACTION

As you know the word ‘atmosphere’ refers to the gas layers surrounding the Earth. Constituents of atmosphere are nitrogen, oxygen, carbon dioxide, ozone, water vapour and other gases. EMR coming from the Sun has to pass through the Earth’s atmosphere twice before being detected by the satellite sensor – once on its journey from the Sun to the Earth and second time after being reflected/ emitted by the Earth’s surface to the sensor. Particles and gases present in the atmosphere interact with the incoming light and reflected/ emitted radiation. Our interest in this interaction is related to the fact that atmospheric components diffuse, refract, reflect, absorb and emit EMR changing the original radiance of the objects observed by a remote sensor. The interaction of EMR with the atmosphere is important to remote sensing for two main reasons:
- information carried by EMR reflected/emitted by the Earth’s surface is modified while traversing through the atmosphere, and
- interaction of EMR with the atmosphere can be used to obtain useful information about the atmosphere itself.

The change in incident radiation on its way towards satellite sensor is governed by several atmospheric effects as shown in Fig. 2.1. These effects are caused by the mechanisms of refraction, reflection, scattering, absorption and transmission.

We will now discuss about these mechanisms.

2.2.1 Refraction

Atmospheric refraction is the deviation of electromagnetic wave from a straight line as it passes through the atmosphere due to variation in air density, which varies with altitude. Atmospheric refraction near the ground produces mirages (Fig. 2.2) and can change the look of distant objects. Atmospheric refraction causes astronomical objects to appear higher in the sky than they are in reality. It affects complete spectrum of EMR in varying degrees. For example, in visible light, blue is more affected than red. The amount of atmospheric
example, in visible light, blue is more affected than red. The amount of atmospheric refraction is a function of temperature, pressure and humidity. The presence of turbulence in the air makes atmospheric refraction inhomogeneous. This is the cause of twinkling of the stars and deformation of the shape of the Sun at sunset and sunrise (Fig. 2.3). Atmospheric refraction is minimum in the zenith and maximum at the horizon. In day-to-day life, we often experience refraction; e.g., when we insert a spoon in a water-filled bowl, it appears slightly elevated (Fig. 2.4).

![Refraction through a prism](image1)

Fig. 2.4: (a) When white light passes through a prism, its components, i.e., VIBGYOR are visible on the other side of the prism illustrating the refraction phenomenon; (b) Another example from everyday life is when you insert a spoon or straw in a glass of water, it appears slightly bent at the water surface; and (c) Representation of refraction of light at the interface of two media

2.2.2 Scattering

Most of the light that reaches our eyes comes not directly from its sources but indirectly by the process of scattering. You see diffusely scattered solar radiation when you look at clouds or at the sky. The land and water surfaces and the objects surrounding us are visible through the light they scatter. An electric lamp does not send us light directly from the luminous filament but usually glows with the light that has been scattered by the glass bulb. Unless you look at a source, such as the Sun, a flame, or an incandescent filament with a clear bulb, you see light that has been scattered. In the atmosphere, you see many colourful examples of scattering generated by molecules, aerosols, and clouds containing droplets and ice crystals. Blue sky (Fig. 2.5), white clouds, and magnificent rainbows and halos, to name a few, are all optical phenomena due to scattering. Scattering is a physical process associated with the light and its interaction with matter. It occurs at all wavelengths covering the entire electromagnetic spectrum.

![Scattering of blue colour from sunlight](image2)

Fig. 2.5: Scattering of blue colour from sunlight
Introduction to Remote Sensing

Scattering is a very important consideration in remote sensing investigations because it can severely reduce the information content of remotely sensed data to the point that the imagery loses contrast and then it becomes difficult to differentiate one object from another.

Scattering is a process in which EMR interacts with particles or large gas molecules present in the atmosphere and cause it to be redirected in all direction from its original path by reflection and refraction.

Scattering depends on several factors such as the wavelength of the radiation, the abundance of particles or gases, and the distance the radiation travels through the atmosphere. Continuously abstract energy from the incident wave and re-radiates that energy in all directions. Therefore, a particle may be thought of as a point source of the scattered energy. In the atmosphere the particles responsible for scattering cover the sizes from gas molecules (~10⁻⁸ cm) to large raindrops and hail particles (~1 cm). The relative intensity of the scattering pattern depends strongly on the ratio of particle size to wavelength of the incident wave. If scattering is isotropic, the scattering pattern is symmetric about the direction of incident wave. A small anisotropic particle tends to scatter light equally into the forward and rear directions. When the particle becomes larger, the scattered energy is increasingly concentrated in the forward directions with greater complexities.

Radiation scattered from a particle is a function of several things such as shape, size and index of refraction of particle, wavelength of radiation, and surface geometry. For a spherical scatterer, the scattered radiation is a function of only viewing angle, index of refraction, and the size parameter defined as

\[\frac{\lambda}{2 \Delta r / \lambda} \]

where,

- \(\Delta \) is the size of particle,
- \(r \) is the radius of the sphere, and
- \(\lambda \) is the wavelength of the radiation.

Depending on the size parameter, the following two types of scattering take place.

- **Selective scattering**
- **Non-selective scattering**

a) Selective Scattering

When the scattering is wavelength-dependent, it is known as selective scattering. Selective scattering are of two types – Rayleigh scattering and Mie scattering.

- **Rayleigh Scattering**

Rayleigh scattering is named after the English physicist, Lord Rayleigh, who offered its explanation. Rayleigh scattering is caused by very small particles and gas molecule with radii for less than the wavelength of EMR of interest (Fig. 2.6). Primarily, it occurs due to oxygen and nitrogen molecules in the sky; thus it is also known as molecular scattering. Rayleigh scattering can be considered to be elastic scattering since the photon energies of the scattered photons is not changed. Scattering in which the scattered photons have either a higher or a lower photon energy is called raman scattering. Usually, this kind of scattering involves exciting some vibrational modes of the molecules, giving lower scattered photon energy, or scattering off an excited vibrational state of a molecule which adds its vibrational energy to the incident photon.

The intensity of light is inversely proportional to the fourth power of the wavelength of the light.

\[I \propto \frac{1}{\lambda^4} \]

where,

- \(I \) and \(\lambda \) are scattering intensity and wavelength of incident radiation, respectively.
Since the extent of scattering is inversely proportional to the 4th power of wavelength, shorter wavelengths such as blue light in the visible spectrum are affected the most. Rayleigh scattering is also responsible for red sunsets. During sunsets, sunlight passes through a longer path of air than at noon. Since the violet and blue wavelengths are scattered more during their longer path through the air than at noon, hence, what we see at sunset is the residue, i.e., the wavelengths of sunlight that are hardly scattered away specially the oranges and reds.

- **Mie Scattering**

Mie scattering occurs when the particles in the atmosphere are of the same size as the wavelengths being scattered. It is caused by particles with radii between 0.1 and 10 μm such as dust, smoke and salt (aerosols). Dust, pollen, smoke and water vapour are common causes of Mie scattering, which tends to affect longer wavelengths. Mie scattering occurs mostly in the lower portions of the atmosphere where larger particles are more abundant, and dominates when cloud conditions are overcast. The amount of scattering is greater than Rayleigh scattering. The violet and blue light are scattered away more with an increasing amount of smoke and dust particles in the atmosphere and only the longer orange and red wavelength light reaches our eyes.

- **Non-Selective Scattering**

Non-selective scattering are wavelength-independent. It is caused by particles (water droplets and ice fragments in cloud) whose radii exceed 10 μm. The scattering is independent of the wavelength; all the wavelengths are scattered equally and not just blue green and red. Non-selective scattering takes place in the lower portion of the atmosphere where there are particles more than 10 times the wavelength of the incident EMR. The most common example of non-selective scattering is the appearance of clouds as white. As clouds consist of water droplet particles and the wavelengths are scattered in equal amount, the clouds appear as white.

Water droplets and large dust particles can cause this type of scattering and thus cause fog and clouds to appear white to our eyes because blue, green, and red light are all scattered in approximately equal quantities.

Scattering creates an effect of haziness in remote sensing images, which reduces contrast in images. It also creates ‘adjacency effect’ in which signal recorded in a
Distortions in remote sensing image due to atmospheric phenomena and the relevant correction processes are discussed in Unit 11 of MGY-002.

Strength of absorption

is represented by absorption cross section σ_a in units of cm2. It is basically division of absorption coefficient and number density (number of molecules per unit volume). It represents a molecule’s effective area for absorption of radiation.

2.2.3 Absorption

By the time EMR is recorded by a sensor, it has already passed through the Earth’s atmosphere twice (once while travelling from the Sun to the Earth and second time while travelling from the Earth to the sensor). When light travels through atmosphere, a gradual reduction in its intensity occurs. The reduction in intensity with distance in a medium (i.e., atmosphere) is called attenuation of light as shown in Fig. 2.7. This attenuation occurs mainly because of the scattering and absorption of light in atmosphere. Absorption is the process by which radiation (radiant energy) is absorbed and converted into other forms of energy such as heat or chemical energy. Absorption is wavelength-dependent. Absorption of light occurs because part of the incident light is transformed into the energy of motions of the atoms in the medium. It can take place in the atmosphere or on the terrain.

Absorbing medium

Input wave

Output wave

scatters green light more effectively than red and blue light. Apparently, red and blue light incident on the grass is absorbed. The absorbed energy is converted into some other form, and it is no longer present as red or blue light. In the visible spectrum, absorption of energy is nearly absent in molecular atmospheres. Clouds also absorb very little visible light. Both scattering and absorption removes energy from the beam of light. Thus, beam of light is attenuated, and we call this attenuation extinction.

There are three main atmospheric constituents, which absorb solar radiation. The three constituents are ozone (O_3), carbon dioxide (CO_2), and water vapour (H_2O). Ozone gas, which plays an important role in the Earth’s energy balance, has maximum concentration in the stratosphere (at the altitude of about 20 to 30 km). Ozone absorbs high energy; it prevents short wavelength portion of the ultraviolet spectrum to transmit through the lower atmosphere.

Carbon dioxide, which occurs mainly in lower atmosphere, absorbs radiation in the mid and far infrared regions of the electromagnetic spectrum. Maximum absorption occurs in the region from about 13 to 17.5 μm. Abundance of water vapour significantly varies with time and location. However, it is commonly present in the lower atmosphere. Water vapour contributes significantly to the absorption of radiation particularly in several bands in the region between 5.5 and 7 μm.
It is important to note here that all media show some absorption. Media which absorb all wavelengths more or less equally are said to show general absorption whereas media which absorb some wavelengths more strongly than others are said to show selective absorption.

The ability of a medium to absorb energy is measured as the absorptance and is expressed as

\[
\text{Absorptance } (\alpha) = \frac{\text{Absorbed radiation}}{\text{Incident radiation}}
\]

From remote sensing point of view, absorption in the visible, near Infrared and thermal Infrared regions of EMS is important. Significant amount of absorption in visible and near infrared (NIR) band is basically due to molecular oxygen and ozone, water vapour, carbon dioxide and some other minor gases. Water vapour, carbon dioxide, ozone, methane and chlorofluorocarbons absorb radiation in thermal infrared band.

As you know, windows are used as a motion for air ventilation and lights. Similarly, there are certain portions of electromagnetic spectrum where light can travel through atmosphere with much absorption. The absorption by various constituents in the atmosphere results in limiting portions of the EMR from reaching the Earth. Hence, the Earth’s atmosphere is not completely transparent to EMR. For remote sensing, this limits us to portions of the EMS where radiation is not strongly absorbed. This portion of the atmosphere is called \textit{Atmospheric Windows}.

Position, extents and effectiveness of atmospheric window are determined by the absorption spectra of atmospheric gases. Energy outside the atmospheric windows is severely attenuated by the atmosphere and hence cannot be effective for remote sensing. The most important atmospheric windows are the visible window (0.4 – 0.7 μm), the 3.7 μm window, the microwave windows (2 – 4 mm and >6 mm), and the 8.5 –12.5 μm window as shown in Fig. 2.8. The visible window is mainly affected by ozone absorption and by molecular scattering. The 8.5 – 12.5 μm infrared window is punctuated by the 9.6 μm ozone absorption band, and is affected by water vapour absorption.

The dark (black) areas in Fig. 2.8 denote regions of the EMS where atmosphere absorbs most of the radiation and light (grey) areas are the
The dark (black) areas in Fig. 2.8 denote regions of the EMS where atmosphere absorbs most of the radiation and light (grey) areas are the atmospheric windows.

The infrared channels are most often between 1 and 30 μm. The most common infrared band for meteorological satellites is in the 10 – 12.5 μm window, in which the atmosphere is relatively transparent to radiation upwelling from the Earth’s surface. Even in the atmospheric window regions, scattering by the atmospheric constituents produces spatial redistribution of energy.

In a broad sense, remote sensing of the Earth’s surface is generally confined to certain wavelength regions as given in Table 2.1.

Table 2.1: Remote sensing of the Earth’s surface with respect to wavelength region

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Atmospheric Window (μm)</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3 – 0.4 μm</td>
<td>UV</td>
</tr>
<tr>
<td>2</td>
<td>0.4 – 0.7 μm</td>
<td>Visible</td>
</tr>
<tr>
<td>3</td>
<td>0.7 – 3.0 μm</td>
<td>Reflected infrared</td>
</tr>
<tr>
<td>4</td>
<td>3.0 – 5.0 μm</td>
<td>Thermal infrared</td>
</tr>
<tr>
<td>5</td>
<td>8.0 – 11.0 μm</td>
<td>Thermal infrared</td>
</tr>
<tr>
<td>6</td>
<td>1.0 mm – 1.0 m</td>
<td>Microwave</td>
</tr>
</tbody>
</table>

Check Your Progress I

1) Point out the mechanisms that are responsible for interaction of EMR and atmosphere.

..
..
..
..
..
..

2) What do you mean by scattering?

..
..
..
..
..
..
by the Earth’s surface. The absorbed short wave (visible) radiation by Earth’s surface is emitted as a long wave radiation (infrared band). The complete process is shown in Fig. 2.9. This physical process changes the magnitude, direction, wavelength, polarisation and phase of the EMR. These changes are detected by the remote sensor and enable the interpreter to obtain useful information about the object of interest. The remotely sensed data contain both spatial information (size, shape and orientation) and spectral information (tone, colour and spectral signature).

There are three major regions in EMR-Earth interaction that are important in remote sensing. The visible and NIR spectral band from 0.3 μm to 3 μm is known as the **reflective region**. In this band, the Sun’s radiation sensed by the sensor is reflected by the Earth’s surface. The band corresponding to the atmospheric window between 8 μm and 14 μm is known as the **thermal infrared band**. The energy available in this band for remote sensing is due to thermal emission from the Earth’s surface. Both reflection and self-emission are important in the intermediate band from 3 μm to 5.5 μm.

In the microwave region (1-30 cm) of the spectrum, the sensor is normally a radar, which is an active sensor, as it provides its own source of EMR. The EMR produced by the radar is transmitted to the Earth’s surface and the EMR reflected (back-scattered/radar return) from the surface is recorded and analysed. The microwave region can also be monitored with passive sensors, called **microwave radiometers**, which record the radiation emitted by the Earth’s surface and its atmosphere in the microwave region. We will now discuss about two phenomenon i.e., reflection and transmission.

2.3.1 Reflection

When light travelling in a medium (i.e., atmosphere) encounters a surface leading to a second medium (Earth’s surface), part of the incident light is returned to the first medium from which it came. This phenomenon is called **reflection**. In other words, reflection is the phenomenon in which the incident radiation is returned back to the same medium due to the discontinuity of electromagnetic characteristics at the interface of two media. Reflection occurs when a ray of light is re-directed as it strikes a surface as shown in Fig. 2.10.

Understanding of reflection is important, since about a third of the energy from the sun is reflected.
Introduction to Remote Sensing

Fig. 2.10: An illustration of reflection of light. You can see inverted images of the (a) letters and (b) the glass object on the floor. You are able to see the inverted images of the objects on the shiny floor because of the reflection of light (c) (θ_i is angle of incident ray and θ_r is angle of reflected ray).

Let us recall the laws of reflection here. As you know, the first law of reflection states that if the reflecting surface is very smooth, the reflection of light that occurs is called specular or regular reflection. The laws of reflection are as given below:

- the incident ray (θ_i), the reflected ray and the normal to the reflection surface at the point of the incidence lie in the same plane as shown in Fig. 2.10(c). This plane is called the plane of incidence.
- the angle of reflection (θ_r) (the angle which the reflected ray makes to the same normal) is equal to the angle of incidence (the angle which the incident ray makes with the normal) as shown in Fig. 2.10(c).

The ability of a medium to reflect energy is measured as the reflectance and it is defined as a ratio between reflected radiation and incident radiation $[\tilde{n}(\tilde{\theta})]$:

$$\text{Reflectance } \tilde{n}(\tilde{\theta}) = \frac{\text{Reflectance radiation}}{\text{Incident radiation}}$$

Reflectance $[\tilde{n}(\tilde{\theta})]$ is the ratio of reflected energy to incident energy and hence is a measure of how much radiation is reflected off a surface. Its value ranges from 0 to 1. Value of 0 means that 0% of incident radiation is reflected off the surface and the value of 1 indicates that 100% of the incident radiation is reflected.

Spectral reflectance $[\tilde{n}(\tilde{\theta})]$ is the ratio of reflected energy to incident energy as a function of wavelength. Various materials of the Earth’s surface have different spectral reflectance characteristics. Spectral reflectance is responsible for the colour or tone in a photographic image of an object. Trees appear green because they reflect more of the green wavelength. The values of the spectral reflectance of objects averaged over different, well-defined wavelength intervals comprise the spectral signature of the objects or features by which they can be distinguished. To obtain the necessary ground truth for the interpretation of multispectral imagery, the spectral characteristics of various natural objects have been extensively measured and recorded.

The spectral reflectance is dependent on wavelength. It has different values at different wavelengths for a given terrain feature. The reflectance characteristics of the Earth’s surface features are expressed by spectral reflectance, which is given by:
The spectral reflectance is dependent on wavelength. It has different values at different wavelengths for a given terrain feature. The reflectance characteristics of the Earth’s surface features are expressed by spectral reflectance, which is given by:

\[\tilde{n}(\tilde{c}) = \left[\frac{E_R(\tilde{c})}{E_I(\tilde{c})} \right] \times 100 \] (3)

where,

- \(\tilde{n}(\tilde{c}) \) is spectral reflectance (reflectivity) at a particular wavelength,
- \(E_R(\tilde{c}) \) is energy of wavelength, reflected from object, and
- \(E_I(\tilde{c}) \) is energy of wavelength, incident upon the object.

The plot between \(\tilde{n}(\tilde{c}) \) and \(\tilde{c} \) is called a *spectral reflectance curve*. This varies with the variation in the chemical composition, physical conditions and EM properties of the object, which results in a range of values. The spectral response patterns are averaged to get a generalised form, which is called spectral response pattern for the object concerned. Spectral signature is a term used for unique spectral response pattern, which is characteristic of a terrain feature. Fig. 2.11 shows a set of typical reflectance curves for three basic types of Earth surface features, viz., the healthy vegetation, the dry bare soil (grey-brown and loamy) and clear lake water.

![Fig. 2.11: Typical spectral reflectance curves for vegetation, soil and water (source: Lillesand and Kiefer, 1993)](image)

The spectral characteristics of these three main Earth surface features are discussed below.

Nature of reflection depends on sizes of surface irregularities (i.e., roughness or smoothness) with respect to the wavelength of the radiation considered. If the surface is smooth in comparison to wavelength, then specular reflection occurs (Fig. 2.12a). In specular reflection, almost all the incident radiation is redirected in a single direction. For such reflection, angle of incidence is equal to the angle of reflection. Specular reflection can occur with surfaces such as smooth metal and calm waterbody. If the surface is rough relative to the wavelength, then energy is scattered more or less equally in all directions as shown in Fig. 2.12 d. This property of light is known as *diffuse reflection*. So,
whichever angle we observe from, a perfectly diffuse reflector would have equal brightness in all the directions. It is largely by diffuse reflection that we see non-luminous objects around us. Uniform grass surface is a good example of diffuse reflectors. Perfectly diffuse reflectors are also called as *Lambertian surface* since the concept of perfectly diffuse reflecting surface is derived from the work of J.H. Lambert. He observed that the perceived brightness of a perfectly diffuse surface does not change with the angle of view. This behaviour of light is known as *Lambert's cosine law*.

It is important to note here that the two laws of reflection are obeyed in specular reflection. They do not hold in case of irregular or diffuse reflection. Much of the reflection of solar radiation takes place from the top of clouds and other materials in the atmosphere and hence a significant amount of this energy is reradiated back to space.

![Image of different types of scattering surfaces](image)

Fig. 2.12: Different types of scattering surfaces (a) perfect specular reflector; (b) near perfect specular reflector; (c) near perfect diffuse reflector; and (d) perfect diffuse reflector (*Lambertian surface*)

To have true reflection, a real discontinuity in the index of reflection is required. The spatial scale of discontinuity, compared to the wavelength of the radiation, must also be significant for a perfect reflection to take place. The energy reflects off at an interface, at the same angle at which it initially strikes the surface, as seen in Fig. 2.12. Of all the interactions in the reflective region, surface reflections are the most useful and revealing in remote sensing applications. The reflection intensity depends on the surface refractive index, absorption coefficient and the angles of incidence.

As you have now understood, reflection exhibits certain fundamental characteristics (as stated in laws of reflection) that are important in remote sensing.

2.3.2 Transmission

When electromagnetic radiation is incident on Earth’s surface, part of the energy gets scattered from the surface (which is known as *surface scattering*) and a part of the energy gets transmitted into the medium. In homogeneous materials, the radiation is simply transmitted but in inhomogeneous materials, the transmitted radiation gets further scattered (which is known as *volume scattering*). The signal received by sensors is a combination of both the processes, i.e., surface and volume scattering.

Transmission of radiation occurs when radiation passes through a substance without significant attenuation (Fig. 2.13). The ability of a medium to transmit energy is measured as the *transmittance* and it is defined as the ratio between transmitted radiation and incident radiation (ô):

\[
\text{Transmittance (ô)} = \frac{\text{Trammitted radiation}}{\text{Incident radiation}}
\]
Fig. 2.13: An illustration of transmission of light. (a) The transparent glass allows light to pass through it hence you are able to see the juice inside; (b) Translucent frosted glass scatters the light that passes through it hence you are not able to clearly see the object inside

Water is a good example of transmitter on Earth surface, which is capable of transmitting significant amounts of radiation. However, there are many other materials which act as transmitters. It is important to note here that transmittance of materials varies with wavelength. For example, plant leaves are generally opaque to visible radiation but they transmit significant amount of radiation in the infrared part of the EMS.

The transmittance of films and filters used in aerial cameras are also important in remote sensing. Transmission also occurs in the atmosphere. Atmospheric transmittance may be characterised either by transmission coefficient or transmittance (τ), which is equal to the fraction of radiation that passes through the atmosphere when rays fall vertically, or by the turbidity factor, which indicates the extent to which the transmittance of an actual atmosphere under given conditions differs from the transmittance of an ideal (ideally clean and dry) atmosphere. Fig. 2.14 shows the transmittance of different gases.

Atmospheric transmittance is dependent on the air mass penetrated by rays, as well as on the amount of water vapour and dust in the air. It varies for radiations of different wavelengths; the smaller the atmospheric absorption and scattering, the greater the atmospheric transmittance.

Fig. 2.14: Illustration showing the amount of energy absorbed and transmitted for different gases (source: www.everythingweather.com/atmospheric-radiation/transmission.shtml)
and moisture. Changing humidity and the dust content in the air at a given point throughout the year determine the annual atmospheric transmittance at that point. The atmosphere is most transmissive in winter and least transmissive in summer. A significant decrease in atmospheric transmittance is observed as a result of increasing air pollution, especially when the dust content increases.

Check Your Progress II
1) What is the range of thermal infrared band?

__
__
__
__
__
__

2) Spectral reflectance is the ratio of ..

__
__
__

2.4 IMPORTANT TERMINOLOGIES

It is essential for us to get introduced to some important radiometric terminologies which are often used in remote sensing.

2.4.1 Radiant Energy

It is the quantity of energy carried by the EMR. It is a measure of the capacity of radiation to perform work (heat, movement, etc.). Radiant energy refers to the quantity of energy propagating into or through a surface of a given area in a given period of time. It is represented as Q and its unit is Joules (J). When radiant energy is considered at a particular wavelength, it is called spectral radiant energy and is represented as Q_λ.

2.4.2 Radiant Flux

It is the rate of flow of radiant energy onto or through a surface. To understand it better, it may be compared to the rate of flow of water past a position along a pipe. It is represented by \dot{O} and is measured in Joules per second (J s$^{-1}$) or watts (W).

When the radiant flux is considered at a wavelength, it is called spectral radiant flux and is represented as \dot{O}_λ. It is measured in Joules per second per micron (J s$^{-1}$ m$^{-1}$) or watts per micron (W m$^{-1}$).

2.4.3 Radiant Intensity

We can further refine our measurement of radiant flux by including a direction. Radiant flux leaving a source per unit solid angle in a given direction is called radiant intensity. It is represented by I and its unit is watts per steradian (W sr$^{-1}$).

2.4.4 Irradiance and Exitance

Now we can refine the measurement of radiant flux by including the size of the area.
It is the amount of radiant flux incident (arriving) upon per unit area of a surface. It is represented as \(E \) and its unit is watts per meter square (W m\(^{-2}\)). When it is considered at a wavelength, it is represented as \(E_{\lambda} \) and is expressed as:

\[
E_{\lambda} = \frac{\tilde{O}_{\lambda}}{A} \quad \text{.................... (4)}
\]

The amount of radiant flux emitted (leaving) from a unit area of a surface is called exitance. It is represented as \(M \). When it is considered at a wavelength, it is represented as \(M_{\lambda} \) and is expressed as

\[
M_{\lambda} = \frac{\tilde{O}_{\lambda}}{A} \quad \text{....................... (5)}
\]

2.4.5 Radiance

It is the most precise radiometric measurement in remote sensing. It is the radiant flux per unit solid angle leaving a per unit projected source area in a given direction. In other words, it is the radiant intensity per unit of projected source area. To better understand the concept of radiance, you can compare it with what you would see if you were in an airplane and looking at the ground through a telescope. You would only see the energy that exited the ground and came through the telescope in a specific solid angle (\(\tilde{U} \)).

Radiance is represented as \(L \) and its unit is watts per meter square per steradian (W m\(^{-2}\) sr\(^{-1}\)). When the radiance is considered in a particular wavelength, it is represented as \(L_{\lambda} \).

\[
L_{\lambda} = \frac{(F_{\lambda} / W)}{A \cos q} \quad \text{................. (6)}
\]

2.4.6 Albedo

It is defined as the ratio of the electromagnetic energy reflected or diffused by a surface to the total incident energy. Albedo of objects varies from object to object. Fresh snow has higher albedo (in the range of about 75 to 95%) and dark soil has lower albedo (in the range of about 5 to 10%). Albedo also varies with the Sun’s angle and the variations are large with tilted angles of the solar rays from 0º to 30º.

Some of the above discussed and frequently used terminologies are summarised in Table 2.2.

Table 2.2: Important radiometric terminologies often used in remote sensing

<table>
<thead>
<tr>
<th>Term</th>
<th>Concept</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant Energy</td>
<td>The quantity of energy propagating into, off of or through a surface of given area in a given period of time</td>
<td>(Q)</td>
<td>J</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Rate at which photons (quanta) strike a surface, or in other words, rate of flow of radiant energy onto or through a surface</td>
<td>(\tilde{O})</td>
<td>J s(^{-1}) or W</td>
</tr>
<tr>
<td>Radiant Intensity</td>
<td>Radiant flux leaving a source per unit solid angle in a given direction</td>
<td>(I)</td>
<td>W sr(^{-1})</td>
</tr>
</tbody>
</table>
Table 2.2: Important radiometric terminologies often used in remote sensing

<table>
<thead>
<tr>
<th>Term</th>
<th>Concept</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant Energy</td>
<td>The quantity of energy propagating into, off of or through a surface of given area in a given period of time</td>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Rate at which photons (quanta) strike a surface, or in other words, rate of flow of radiant energy onto or through a surface</td>
<td>\dot{O}</td>
<td>J s$^{-1}$ or W</td>
</tr>
<tr>
<td>Radiant Intensity</td>
<td>Radiant flux leaving a source per unit solid angle in a given direction</td>
<td>I</td>
<td>W sr$^{-1}$</td>
</tr>
<tr>
<td>Irradiance</td>
<td>Radiant flux incident (arriving) upon per unit area of a surface</td>
<td>E</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>Radiant Exitance</td>
<td>Radiant flux emitted (leaving) from a unit area of a surface</td>
<td>M</td>
<td>W m$^{-2}$</td>
</tr>
<tr>
<td>Radiance</td>
<td>Radiant flux per unit solid angle leaving a per unit projected source area in a given direction</td>
<td>L</td>
<td>W m$^{-2}$ sr$^{-1}$</td>
</tr>
<tr>
<td>Reflectance</td>
<td>Ratio of reflected energy to incident energy</td>
<td>$\tilde{h}(\tilde{c})$</td>
<td>%</td>
</tr>
<tr>
<td>Albedo</td>
<td>The ratio of the electromagnetic energy reflected or diffused by a surface to the total incident energy</td>
<td>A</td>
<td>%</td>
</tr>
</tbody>
</table>

2.5 **ACTIVITY**

You have read about interaction of electromagnetic radiation with the atmosphere and the Earth’s surface. You are now aware of different types of phenomenon taking place in journey of electromagnetic radiation from Sun to Earth and back to satellite sensor. You might be enthusiastic to do some activities to better understand these phenomena.

1) As we know now, the colour of an object is not actually within the object itself. Rather, the colour is in the light that shines upon it and is ultimately reflected or transmitted to our eyes. So you can try to see a yellow coloured object (yellow is a mixture of red and green colour) in a red light. You can note down the colour changes observed.

2) You can build your own filter wheel (using different coloured films) through which you can examine a colour image.

3) You can observe the changes in the colour of sun rays from early morning to afternoon and again till evening. The process of scattering will be clearly understood to you.

2.6 **SUMMARY**

Let us summarise what we have studied in this unit:

- Scattering, reflection and absorption are important phenomena which take place when EMR interacts with the atmosphere and the Earth’s surface.

- In the atmosphere, scattering and absorption are the prominent mechanisms for attenuation of the radiation.
2.7 UNIT END QUESTIONS

1) How does scattering differ from absorption, although both attenuate the radiation?

2) Define atmospheric windows and state the infrared window which is used for remote sensing.

3) Why does the sky appear blue and Sun in the horizon red?

4) What is spectral reflectance?

2.8 REFERENCES

- www.everythingweather.com/atmospheric-radiation/transmission.shtml
- www.islandnet.com/~see/weather/almanac/arc2008/alm08oct.htm
- www.weatherscapes.com
- All the websites were retrieved on May 17, 2011.

2.9 FURTHER/SUGGESTED READING

2.10 ANSWERS

Check Your Progress I

1) Refraction, reflection, scattering, absorption and transmission.

2) Scattering is a physical process by which a particle in the path of an EM wave continuously abstract energy from the incident wave and re-radiates that energy in all directions.

Check Your Progress II

1) The band corresponding to the atmospheric window between 8 \(\mu m \) and 14 \(\mu m \) is known as the thermal infrared band.

2) Reflected energy to incident energy.

Unit End Questions

1) Scattering is basically redistribution of incident energy through the process of