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3.1 INTRODUCTION 

In the preceding units, it is assumed that the surfaces in contact are smooth and 
the forces between the bodies act normally to the surface of contact. However, in 
practice, it is impossible to have perfectly smooth surface. There always exists 
microscopic roughness which tends to prevent any possible sliding motion 
between the two bodies. In this unit, you are going to learn the laws governing 
dry friction formulated by Coulomb and their applications in different situations. 
You will study the relation between the normal and frictional forces at a point of 
contact between two non-lubricated rigid bodies. You will also study the 
frictional forces in various devices such as inclined plane, wedges, screws, belts 
and rope drives. The study of frictional forces is essential to solve the practical 
problems in Engineering Mechanics. 

Objectives 
After studying this unit, you should be able to 

• understand the laws of dry friction, 

• determine the magnitudes of frictional forces in different situations, 

• work out friction-related quantities such as coefficient of angle of 
friction, angle of repose to solve problems involving dry friction, and 

• apply laws of friction to various devices like inclined plane, wedges, 
screws, belts and rope drives. 

3.2 LAWS OF FRICTION 

As a result of studies carried out by Coulomb in 1781, one can work out  
friction-related quantities such as coefficient of friction, angle of friction, angle of 
repose to solve problems involving dry friction, and he noted that : 
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Applied Mechanics (i) The total amount of friction that can be developed is independent of 
the magnitude of the area of contact. 

(ii) The total frictional force that can be developed is proportional to the 
normal force transmitted across the surface of contact. 

(iii) For low velocities, the total amount of friction that can be developed 
is practically independent of velocity.  However, it is less than the 
frictional force corresponding to impending motion 

Consider a body of weight W resting on a floor. Let P be the force applied 
to it as shown in Figure 3.1. As forces P and W are concurrent, there must 
be a third force (provided by the floor) equal in magnitude and opposite in 
nature to the resultant of P and W to keep the body in equilibrium. Let it 
be denoted by R. The normal and frictional (i.e., parallel to the floor) 
components of R are represented by N and F, respectively.     

As P increases, F will also increase corresponding to the limiting 
condition of impending motion. The maximum value of F that can be 
developed is called limiting static friction and is proportional to the 
normal reaction N. 

 

 

 

 
 
 

 
Figure 3.1 

Mathematically NF ∝  

∴   .NF μ=  

where, μ is a constant and is called the coefficient of static friction. The 
angle between the normal reaction N and the resultant reaction R is called 
the angle of friction. If it is denoted by φ, then we get 

   μ==φ
N
Ftan  

Therefore, the tangent of angle of friction is equal to the coefficient of 
friction. 

It is our common experience that when the body begins to move, there is a 
decrease in frictional effect from the limiting static friction. An idealized 
plot of this action as a function of time is shown in Figure 3.2. 

This shows that there is a drop from the limiting frictional effect to a 
frictional effect that is constant with time. It is independent of the velocity 
of the object. 

Generally, the coefficient of friction for dynamic condition are about  
25 percent less. 
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Figure 3.2 

Table 3.1 gives the values of static coefficients of friction for various 
material-on-material combination. 

    Table 3.1 

Surface of Contact μ 

Steel on cast iron 0.40 

Copper on steel 0.36 

Hard steel on hard steel 0.42 

Mild steel on mild steel 0.57 

Rope on wood 0.70 

Wood on wood 0.20-0.75 

(Source : F. P. Bowden and D. Tabor (1950), The Friction and Lubrication of Solids, 
Oxford University Press, New York.) 

3.3 PROBLEMS INVOLVING DRY FRICTION 

Just before the conditions of impending motion, the bodies are in equilibrium.  
Using the equations of equilibrium, you can work out the unknown frictional 
forces and hence determine the various friction-related quantities. The most 
important thing is to ascertain the direction of frictional forces which always 
oppose possible, impending or actual relative motion at the contact surfaces. 

Example 3.1 

Find the force P needed to start block B as shown in Figure 3.3 moving to 
the right if the coefficient of friction is 0.3 for all surfaces of contact.  
Block A weighs 80N and Block B weighs 160 N. 

 

 

 
 
 
 

 

(a)      (b) 

Figure 3.3 
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Applied Mechanics Solution 
Figure 3.3(a) shows the free-body diagrams for block A and block B. As the 
possible motion of the block B is towards right, the direction of frictional 
forces, FA and FB, are shown acting towards left, for block B. When block B 
moves towards right the relative motion of block A will be towards left and 
hence the frictional force, F

B

A, for block A is acting towards right as shown 
in figure. 
Now the conditions of equilibrium can be applied to determine the  
force P. 
For Block A 

0=Σ xF  

∴               . . . (3.1) TTFA 866.030cos o ==

0=Σ yF  

∴   o30sinTWN AA −=

          = 80 − 0.5 T              . . . (3.2) 

Also   AA NF μ=  μ = 0.3 

∴       )5.080(3.0866.0 TT −=   

   N62.23
016.1
24

==T  

∴    N45.2062.23866.0 =×=AF              . . . (3.3) 

∴   62.235.080 ×−=AN  

           = 68.19 N 
For Block B 

0=Σ yF  

∴   BAB WNN +=  

 NB  = 68.19 N and WB BB  = 160 N 
           = 68.19 + 160 
           = 228.19 N              . . . (3.4) 

      FB = μ  NB BB

        μ = 0.3   and  NB = 228.19 B

      FB = 0.3 × 228.19 B

             = 68.46 N              . . . (3.5) 
0=Σ xF  

∴   BA FFP +=  

from  Eqs. (3.3) and (3.5), FA = 20.45 N  and  FB = 68.48 N B

∴    P = 20.45 + 68.46 
        = 88.91 N               . . . (3.6) 
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FrictionTherefore, a force of 88.91 N is needed to move the block B to the right.  
The required magnitude of the force to move the block B towards right is 
88.91 N. 

Example 3.2 

A force of 200 N inclined at 60o to the horizontal is applied to the block A 
weighing 400 N. Determine whether block A moves if the coefficient of 
friction is 0.5. If not, then find the maximum value of the coefficient of 
friction when it is just on the point of moving (Figure 3.4). 

Solution 

There is a possibility of movement of block A towards right. Therefore, the 
direction of frictional force, FA, will be towards left. 

 NA = W — P sin 60o

where,   W  = 400 N and P = 200 N 

∴    NA = 400 — 200 sin 60o

       = 226.795 N 
       FA(max) = μ NA

     μ  = 0.5     and    NA = 226.795 N 

∴     FA (max)  = 0.5 × 226.795 

        =113.398 N 

 

 

 

 

 

 

 
Figure 3.4 

This is the limiting static friction that is developed between the surfaces of 
contact. As the horizontal component of P (i.e 200 cos 60o = 100 N) is less 
than 113.398 N, the block A will not move if the coefficient of friction  
is 0.5. 

But, if the limiting static friction is less than the horizontal component of P 
then the block A will move. 

For this case, 

∴   N100≤AF

∴   100(max) =AF

∴  100=μ AN  

∴  
795.226

100100
(max) ==μ

AN
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Applied Mechanics              = 0.4409 

Therefore, if the coefficient of friction is 0.4409 or less, then the block A 
will move under the given conditions. 

SAQ 1 
(a) Mark the directions of frictional force and normal reaction at the 

surface of contact for block A shown in Figure 3.5. Determine the 
developed frictional force. What will be the value of limiting 
frictional force if the coefficient of friction is 0.3? 

 

 

 

 
 

Figure 3.5 

(b) A ladder weighing 80 N rests at a corner as shown in Figure 3.6.  
What is the minimum angle (with the horizontal) possible before the 
slip occurs? The coefficient of static friction at A is 0.2 and at B  
is 0.3. 

 

 

 

 

 

 

 
Figure 3.6 

(c) Two blocks – A weighing 30 N and B weighing 50 N – are on a rough 
horizontal surface as shown in Figure 3.7. Find the minimum value of 
P just sufficient to move the system. If the coefficient of friction 
between block A and the ground is 0.28 and that between block B and 
the ground is 0.22, find the tension in the string. 

 

 

 
Figure 3.7 

(d) For the system shown in Figure 3.8, find the value of load W so that 
the blocks A and B are just on the point of sliding. The coefficient of 
friction between the blocks and the ground is 0.25. The weight of the 
blocks are 800 N each. 
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Figure 3.8 

(e) A force P is applied at an angle α to the packing crate measuring  
0.5 m × 0.8 m as shown in Figure 3.9. If the coefficient of friction is 
0.3, determine the largest allowable value of the angle α and the 
corresponding value of P if it moves to the left without tipping. 

 
 
 
 
 
 
 

Figure 3.9 
 
 

3.4 INCLINED PLANE 
One of the simplest engineering devices of lifting loads to higher altitudes is the 
inclined plane. The component of the weight of body along the inclined plane 
opposes the movement if the body has to move up or helps the action if it has to 
move down. 
Consider a body resting on an inclined plane which is just on the point of moving 
down. The maximum angle of inclination at which this happens is called the 
angle of repose. 
As the body is just on the point of moving down, the direction of frictional force 
will be acting up the inclined plane. 
Resolving the forces along and the normal to the inclined plane and applying the 
conditions of static equilibrium (Figure 3.10(a)), we get 

 

 

 

 

 
 
 

Figure 3.10 

0=Σ xF  

∴   α= sinWFA
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∴  α= cosWN A  

But     α=
α
α

==μ tan
cos
sin

W
W

N
F

A

A  

This shows that the tangent of the angle of repose is equal to the coefficient 
of friction. 
Also, we know, μ  = tan φ 

where,      φ = angle of friction 
Therefore, angle of repose is equal to the angle of friction. 
If the angle of inclination α of the plane is less than the angle of repose φ, the 
body will be at rest and an external force will be required to move it. If α > φ then 
the body will run down the plane and an external force will be required to prevent 
the body from running down. 
Example 3.3 

A body weighing 500 N is resting on an inclined plane making an angle of 
30o with the horizontal. The coefficient of friction is 0.3. A force P is 
applied parallel to and up the inclined plane. Determine the least value of P 
when the body is just on the point of movement. 
(i) Case I : moving down, and 
(ii) Case II : moving up. 

Solution 
Here, the angle of friction φ = tan−1 (0.3) = 16.699o

          = 16o 41′ 57″ 

∴      α  >  φ 
Case I 

When the body is just on the point of moving down, the frictional 
force will be acting upwards along the plane. 

 

 

 

 

 

 
 

Figure 3.11(a) 

Resolving all forces parallel to the inclined plane, we get 

030sin o
11 =−+ WFP  

∴   1
o

1 30sin500 FP −=

        = 250 − F1               . . . (3.7) 
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FrictionResolving all the forces normal to the inclined plane, we get 

030cosWN o
1 =−  

∴               . . . (3.8) N43330cos500 o
1 ==N

 N9.1294333.011 =×=μ= NF  

Putting this in Eq. (3.7), we get, 

    P1 = 250 − 129.9 = 120.1 N 
Case II 

When the body is just on the point of moving up, the frictional force 
will be acting downwards. 

 

 

 

 

 

 

 
Figure 3.11(b) 

Resolving all the forces parallel to the inclined plane, we get 

  P2 − F2 − W sin 30o = 0 

∴  P2 = 500 sin 30° + F2 = 250 + F2.             . . . (3.9) 
Resolving all the forces normal to the inclined plane, we get 

  N2 − W cos 30o = 0 

∴             . . . (3.10) N43330cos5002 =°=N

∴  N9.1294333.022 =×=μ= NF  

Putting the value of F2 in Eq. (3.9), we get 
  P2 = 250 + 129.9 = 379.9 N 
Thus, it is seen that when the applied force is 379.9 N or more the 
body will move up and when it is 120.1 N or less it will move down.  
When the force applied is between 120.1 N and 379.9 N, the body 
will neither move upwards nor downwards, experiencing variable 
friction varying from 129.9 N acting upwards decreasing to zero and 
then increasing up to 129.9 N acting downwards. 
The mistake most frequently made in the solution of a problem 
involving friction is to write the friction force in the form F = μ N. 
It is to be remembered that only in case of impending or actual 
sliding motion of bodies with respect to one another the frictional 
force will be maximum, i.e. F max = μ N. In all other cases, the 
frictional force acting on a body is found by solving the equations 
of static equilibrium of the body. 
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(a) A crate weighing 5 kN is kept on an inclined plane making an angle 

of 30o with the horizontal. 

(i) Determine the value of P (the horizontal force) required to 
move the crate up the plane. 

(ii) What is the minimum value of P required to keep the crate from 
sliding down the plane? 

(iii) For what range of value of P will the crate remain in 
equilibrium position shown in Figure 3.12. 

 

 

 

 

 
 

 
Figure 3.12 

(iv) If P = 5.2 kN, find the magnitude and direction of the frictional 
force acting on the crate. 

(b) If the weight of block Q is 1.2 kN, find the minimum value of weight 
of block P to maintain the equilibrium as shown in Figure 3.13. 

 

 

 

 
 

 
Figure 3.13 

(c) Blocks M and N rest on an inclined plane as shown in Figure 3.14.  
The coefficient of friction between block M and block N is 0.4 and 
that between block N and the plane is 0.5. If the weight of block M is 
600 N and that of N is 800 N, for what value of θ, the motion of one 
or both of the blocks is impending? If θ =15o, find frictional forces 
between M and N and between N and the plane. 

 

 

 

 

 
 

Figure 3.14 
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Friction3.5 WEDGE FRICTION AND SCREW FRICTION 

3.5.1 Wedge Friction 
Wedges are generally used to move heavy loads by applying a force which is 
considerably smaller than the weight of the load. Owing to the friction existing 
between the surfaces in contact, the wedge remains in place after being forced 
under the load. Therefore, for small adjustments in the position of heavy pieces of 
machinery wedges are extensively used. 

The problems involving wedges can be solved by applying the friction laws to the 
various parts of the device. The example given below will illustrate the procedure 
to solve problems involving wedges. 

Example 3.4 

A block weighing 800 N is raised up with the help of two wedges –  
6o wedge B and C of negligible weights as shown in Figure 3.15. If the 
coefficient of static friction is 0.25 for all surfaces of contact, determine the 
smallest force P to be applied to raise the block A. 

 

 

 

 

 

 
 

Figure 3.15 

Solution 

Let us first draw the free-body diagrams for block A and wedges B and C.  
Block A is in contact with the vertical wall and the horizontal surface of 
block B. Therefore, the normal reactions N1 and N2 will be perpendicular to 
the respective surfaces of contact as shown in Figure 3.16. The direction of 
movement of block A with respect to the wall being vertically upwards, the 
direction of frictional force will be vertically downwards as friction opposes 
the motion. Similarly, the motion of block A with respect to wedge B being 
towards right, the direction of frictional force at the surface of contact of 
block A and the wedge will be towards left as shown in the free body 
diagram of block A. 

In the limiting condition, we know F1 = μ N1 and F2 = μ N2. Therefore, there 
are only two unknowns : N1 and N2 and two equations of equilibrium being 
available, we can find the values of N1 and N2. 

0=Σ xF  

∴    021 =− FN

∴              . . . (3.11) 221 25.0 NFN ==

0=Σ yF  

∴   012 =−− FWN  
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Applied Mechanics ∴   025.0800 12 =−− NN  

∴   0)25.0(25.0800 22 =−− NN  

∴   800)0625.01(2 =−N  

∴   N33.853
9375.0
800

2 ==N           . . . (3.12) 

 

 

 

 

 
 
 

Figure 3.16 : Free-body Diagram of Block A 

Now, let us draw the free-body diagram of wedge B. Keeping in mind that 
the frictional forces oppose the motion and the normal reactions, as the 
name suggests, are perpendicular to the surfaces of contact, the various 
forces acting on wedge B will be as indicated in the free-body diagram of 
wedge B shown in Figure 3.17. 

 

 

 
 

 
 

 
Figure 3.17 : Free-body Diagram of Wedge B 

Applying the equations of equilibrium, we get 
0=Σ yF  

∴   06sin6cos o
32

o
3 =−− FNN

∴   )25.0(06sin25.06cos 33
o

32
o

3 as NFNNN ==−−

∴  00261.033.8539945.0 33 =−− NN  

∴  N18.881
9684.0

33.853
3 ==N            . . . (3.13) 

0=Σ xF  

∴   06sin6cos o
3

o
32 =−++ PNFF

∴     o
3

o
32 6sin6cos NFFP ++=

   3322 25.0,25.0 and NFNF ==  

∴                P  o
3

o
32 6sin6cos25.025.0 NNN ++=
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FrictionPutting the values of N2 and N3, we get 
0 = 0.25×  853.33 + 0.25×  881.18 cos 6o + 881.18 sin 6o

      = 213.33 + 219.09 + 92.11 
      = 524.53 N             . . . (3.14) 
Therefore, a force of 524.53 N is required to raise the block A. 
You can solve the problem by constructing the triangle of forces R1, R2 and 
W for block A, where R1 is the resultant reaction of N1 and F1 and R2 is the 
resultant reaction of N2 and F2 respectively. 
As the three forces keep the block in equilibrium, the forces must the 
concurrent. This can be solved graphically or by using Lami’s theorem for 
three concurrent forces (Figure 3.18). 

 

 

 

 

 

 
 

 
Figure 3.18 

By applying Lami’s Theorem, we get 

)90(sin)180(sin)290(sin o
2

o
1

o φ−
=

φ−
=

φ+
RRW  

where, φ = angle of friction =  )25.0(tantan 11 −− =μ

     o036.14=

∴  o

o

2 072.28cos
036.14cos

2cos
cos WWR =

φ
φ

=  

         = N61.879
8823.0

9701.0800
=

×  

Similarly, for wedge B, there are three forces acting : R2, R3 and P 
where R2 = resultant reaction of N2 and F2

R3 = resultant reaction of N3 and F3

The three forces acting are as shown in Figure 3.19. 
By applying Lami’s Theorem, we get 

)90(sin62180(sin)690(sin o
3

)oooo
2

φ+
=

−φ−
=

+φ+

RPR  

∴ 
)6(cos

)62(sin
o

o
2

+φ
+φ

=
RP  

   o

o

036.20cos
072.34sin61.879

= N53.524=  
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Figure 3.19 

3.5.2 Screw Friction 
A screwjack is a device used for lifting or lowering heavy loads by applying 
comparatively smaller efforts at the end of the lever. The thread of a screw jack 
may be considered as inclined plane wound round a cylinder and the principles 
used in solving problems on inclined plane can be applied to solve problems 
involving screw friction. If α is the angle of the inclined plane and φ is the angle 
of friction, we know that the horizontal force required to pull the load up is given 
by 

)(tan φ+α=WP  

This force P which drags the load along the inclined plane is related to the force 
P1 applied at the end of the lever of the screwjack. This can be found out by 
taking moments of the forces about the center line of the cylinder. If L is the 
length of the lever and r is the mean radius of the screw, we get 

P1 ×  = P × r             . . . (3.16) l

∴   p
l
rP =1  

∴   )α(tan1 φ+= W
l
rP  

    
)tantan1(

)tan(tan
φα−
φ+α

= W
l
r  

when there is one complete revolution, the load is raised through one pitch, i.e. 
centre to centre distance between two consecutive threads. 

∴  
r

p
π

=α
2

tan  

and  μ=φtan  

Using these relations we can work out the horizontal effort P1 required to raise 
the load up. 
If the load remains in position even after removal of the effort P1 the screwjack is 
said to be self-locking. It does not work in reverse direction because the angle of 
inclination, in such cases, will be less than the angle of friction 

φ<α∴φ<α tantan  

∴  α>μμ<α tantan .e.i  
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Friction
Therefore, if the coefficient of friction is greater than ,

2 r
P
π

the screwjack will be 

self-locking. To lower the load, the effort P at the thread required will be  
W tan (φ − α) hence the effort at the end of the lever will be given by 

)(tan2 α−φ××= W
t
rP  

SAQ 3 
(a) Two 8o wedges are used to push a block horizontally as shown in 

Figure 3.20. If coefficient of friction is 0.25 for all surfaces of contact, 
determine the minimum load P required to push the block  
weighing 6 kN. 

 

 

 
 
 

 
Figure 3.20 

(b) Two wedges lift a heavy block of 8 kN as shown in Figure 3.21. If the 
angle of wedges is 10o and the coefficient of friction is 0.3 for all 
surfaces of contact, find the value of P required to drive the wedges 
under the load. 

 

 
 

 
Figure 3.21 

(c) The pitch of the thread of a screwjack is 5 mm and its mean diameter 
is 60 mm. The coefficient of friction is 0.08. Find the force that 
should be applied at the end of the lever 200 mm long measured from 
the axis of the screw (i) to raise a load of 20 kN, and (ii) to lower the 
same load. 

(d) The pitch of a square threaded screwjack is 8 mm and the mean 
diameter is 50 mm. The length of the lever is 400 mm. If a load of  
2 kN is to be lifted, what force at the end of the lever will be 
required?  Take μ = 0.2. State with reasons whether the screw is self-
locking or not. 

 
 

 

3.6 SIMPLE MACHINES 

A machine is a tool by means of which, a given force can be tackled by applying 
another force of suitable magnitude, direction, sense or line of action or a 
combination of these. In lifting machines, which are used to lift heavy weights, 
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Applied Mechanics the former (i.e. the force to be overcome) is called the ‘load’ and has a large 
magnitude while the latter (i.e. the force to be applied) is called ‘effort’ and must 
be smaller so that hoisting, holding or lowering of heavy weights is facilitated. 

3.6.1 Some Basic Terms 
Let ‘W’ denotes the load and ‘P’ the effort, which is necessary to lift the load ‘W’.  
Let  and ‘y’ be the displacements of the points of application of W and P, 

respectively as measured in their respective directions. The ratio 

'' x

M
P
W

=  is 

called the ‘mechanical advantage’ (M. A.) of the machine, while the ratio V
x
y
=  

or  
(V. R.) is called its ‘velocity ratio’. The work done ),( xW ×  is called the output of 
the machine while the work put in by the effort which is = P × y in achieving the 
same, is called the input to the machine.  For an ideal or frictionless machine (by 
virtue of the principle of conservation of energy), there is no loss of energy, hence 
we have : 

Output from the machine = Input into it 
i.e.  W x = P y 

or  ,
x
y

P
W

=   i.e. M = V 

i.e. the Mechanical Advantage = Velocity Ratio for an ideal machine. If the ideal 
load is W1 and the actually applied effort = P, we shall have 

   PV
x
yPWI =⋅=        . . . (3.17(a)) 

or Ideal Load = Actual Effort × Velocity Ratio, and similarly, if we call ideal 
effort P to lift a given load W (actual load), we shall have 

V
W

xy
WPI ==
/

                  . . . (3.17(b)) 

or  Ideal Effort =Actual load ÷ Velocity Ratio. 
It is clear that for lifting a given load W through a given height, the smaller the 
effort, the greater will be the displacement. This applies much more to an actual 
machine because howsoever high the standard of its workmanship and lubrication 
may be, a certain amount of friction is always present in it, with the result that out 
of the work put into it, a portion is used up against friction and hence  not 
available for raising the load, i.e. 

xW .  is always < P. y in an actual machine. 

Since   < Py, Wx

x
y

P
W

<   or M < V       . . . (3.18(a)) 

In other words, Mechanical Advantage is always less than Velocity Ratio in an 
actual machine. 

Now the efficiency (η) of a machine is defined as  
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   .

Input
Output

V
M

Py
Wx

===η        . . . (3.18(b)) 

in words, 
RatioVelocity

AdvantageMechanicalEfficiency =  

and is generally expressed as a percentage, which naturally is always less than 
100%. 

Now since   
x

PyPVW ==1   

We have, Py = 1W x . 

From   
11 W

W
xW

Wx
==η       . . . ( 3.18(c)) 

In words, 

 Efficiency = ,
loadIdeal
loadActual  

and the ideal load will always be greater than the actual load. 

Also since  

x
y

W
V
WP ==1     from Eq. (3.17(b)) 

We have    yPWx 1=

or     
P
P

Py
yP 11 ==η         . . . (3.18(d)) 

In words, Efficiency =
EffortActual

EffortIdeal  

And ideal effort is always less than the actual effort, which is obviously due to the 
friction in the machine. Hence we may say that additional effort due to friction 

        ,)( 1 ⎟
⎠
⎞

⎜
⎝
⎛ −=−=

V
WPPP  

or effort lost in friction = ⎟
⎠
⎞

⎜
⎝
⎛ −

V
WP         . . . (3.19(a)) 

and similarly, additional load created by friction 

   = (  − W) = (PV − W)      . . . (3.19(b)) 1W

where P and W are values of actual effort and load respectively. For any machine, 
its velocity ratio is solely dependent on the geometry of its components and has 
nothing to do with the condition of its lubrication or maintenance, which means 
that the given drawing or details of a machine, we can determine its velocity ratio 
and its value remains the same for any load. The mechanical advantage, however, 
is dependent in addition on the workmanship that went into the fabrication of the 
machine, its standard of maintenance, conditions regarding lubrication etc. at the 
time of the test. The M. A. also varies with the load since friction is dependent on 
load.  It is of course true that the better the workmanship, maintenance and 
lubrication of a machine the closer its mechanical advantage approaches the 
velocity ratio and its efficiency, unity. 



 
 

 
86 

Applied Mechanics 3.6.2 Some Basic Machines 
Now we will work out the velocity ratios for few basic machines.  

(a) Lever 

Consider the lever shown in Figure 3.22 with its fulcrum at O, and arms ‘a’ 
and ‘b’ at the tips of which the load and the effort are applied respectively. 

 
 
 
 
 
 

Figure 3.22 

For a small rotational displacement of the lever ‘dθ’ when the load is lifted 
through a height d x  we have d x = a d θ and dy = b dθ 

∴  ,
a
b

ad
bd

dx
dyV =

θ
θ

==             . . . (3.20) 

i.e.  .
armloadofLength
armeffortofLength

=V  

(b) Simple Pulley 

Consider the pulley shown in Figure 3.23 in which A and B denote the 
initial positions of the load and effort respectively and AA′ and BB′ the 
corresponding final ones. Evidently in this case, considering the rope to be 
inextensible, y = x from which we have 

   1==
x
yV              . . . (3.21) 

 

 

 

 

 

 

 
 

 
Figure 3.23 : A Simple Pulley 

(c) Inclined Plane 

Consider an inclined plane whose inclination to the horizontal is θ, on 
which a block (weight W) is placed. It is moved by effort P applied in the 
horizontal direction (Figure 3.24). 

If the block is moved a distance AA′ (‘s’) along the plane, we have 
x = s sin θ which is the component of the displacement of W in its direction 



    

87

 

Frictionand y = s cos θ, which is the component of the displacement of P in its 
direction. 

 

 

 

 

 
 

 
 

 
Figure 3.24 : Inclined Plane 

Here  ∴ θ=
θ
θ

== cot
sin
cos

s
s

x
yV           . . . (3.22) 

(d) Simple Gearing 

Consider a pair of meshing gear-wheels A and B with number of teeth NA 
and NB, respectively, as in Figure 3.25. It is obvious that for the smooth 
meshing of the wheels, ‘p’, the centre-to-centre distance between any two 
adjacent teeth (measured along their pitch-circles — this term is explained 
later) must be the same for both the wheels. This is called the pitch of the 
teeth. 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3.25 : A Pair of Gear Wheels 

It is easy to see that if A is rotated clockwise so that its tooth No. 1 moves 
exactly into the position occupied by tooth No. 2 (Figure 3.25), it will push 
B anticlockwise so that Bs slot 1′ will occupy the position occupied by  
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Applied Mechanics slot 2′. If this is repeated NA times, it is clear that A will have made exactly 
one revolution clockwise while NA slots of B will have crossed the line of 

centres C1 C2, i.e. B will have rotated ⎥
⎦

⎤
⎢
⎣

⎡

B

A

N
N revolutions anticlockwise. 

Let us replace the two toothed wheels by circular discs of radii 

⎥
⎦

⎤
⎢
⎣

⎡
×

+
= 21)(

CC
NN

Nr
BA

A
A and ⎥

⎦

⎤
⎢
⎣

⎡
×

+
= 21)(

CC
NN

Nr
BA

B
B  respectively, 

If A was made to drive B by friction without slip, they would have had the 

same rotation-ratio as written above (i.e. 
B

A

N
N ). Circles with the above radii 

are called the pitch circles of two wheels. To obtain ‘p’, the pitch which is 
the distance between the centre-lines of two adjacent teeth. It is measured 
along the pitch-circle circumference of either wheel, as stated earlier. 

Clearly
A

A
A N

rp π
=

2 , and 
B

B
B N

rp π
=

2  where, pA and pB are the pitches of A 

and B, respectively. Further, p

B

A = pBB if the wheels have to mesh. This 

relation shows that 
B

A

B

A

N
N

r
r

= or the pitch circle radii of two meshing wheels 

are proportional to their number of teeth. 
When a system of meshing toothed wheels is used to lift a machine, the 
velocity ratio will depend on the other details of the same. Suppose as in 
Figure 3.25 we have a concentric load-drum of radius R rigidly fixed to the 
toothed wheel B, over which the rope carrying the load W is wrapped and a 
lever (length L) rigidly fixed to the toothed wheel A, for applying the effort 
P, which is done always at right angles to it (lever). If A makes one 
revolution, y, the distance moved by the effort = 2π L. The wheel B will 

then rotate
B

A

N
N revolutions and hence x , the distance moved by W, 

R
N
N

B

A π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2 . 

and  ∴ .
2

2.. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π⎥
⎦

⎤
⎢
⎣

⎡
π

==
A

B

B

A N
N

R
L

R
N
N

L
x
yRV           . . . (3.23) 

(e) Screw-jack 
Consider a screw-jack held with the axis of its screw vertical and with the 
bottom of the screw fixed to a base plate. Its nut carries a load platform on 
which a load W is placed. A rigid lever (length L) is welded to the nut, at 
the end of which the effort P may be applied in horizontal plane at right 
angles to the lever to rotate the nut so that as it rotates; it moves axially and 
the load W is raised or lowered depending on the direction of P (Figure 
3.16). 
Suppose we apply P continuously as above and rotate the nut so as to raise 
the load W. If we make one complete revolution of the nut, y = 2 π L and 
the nut will move axially by a distance = , the lead of the screw, where l = l
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Frictionnp where p is the pitch of the screw-threads and n = 1, 2, 3 etc. depending 
on whether the screw is single, double or triple-threaded, etc. 
 

 

 

 

 

 

 

 

 

 
Figure 3.26 : Screw Jack 

Obviously x is now = 1, 

Then   
np

L
l

2ππ
x
yRV π

===
2..             . . . (3.24) 

(f) Worm and Worm-wheel 

Figure 3.27 shows the outline of a worm and worm-wheel. 

 

 

 

 
 
 

 
 

 

 
Figure 3.27 : Worm and Worm-wheel 

This machine consists of a toothed wheel (the worm-wheel) rotating in a 
pair of bearing shown at B (Figure 3.27) and a screw (called the worm) with 
its axis arranged in the middle plane of the wheel. The worm rotates in 
bearings BB1 and B2B  which are so positioned that the imaginary cylindrical 
surface midway between the roots and tips of its threads is tangential to the 
pitch-circle of the wheel. Also the pitch of the worm-screw threads and the 
circular pitch of the teeth of the worm-wheel is same, so that the former 
mesh properly with the slots in the wheel-teeth (Figure 3.27). 

It is evident from the arrangement that with one complete rotation (shown 
by arrow ‘a’) of the worm, the tooth of the worm-wheel which is next to the 
engaging thread of the worm, will be pushed in the direction of the apparent 
advance of the worm by a distance equal to its pitch (which is equal to the 
pitch of the wheel). The previous tooth of the wheel is engaged in the 
worm-screw-threads and will be ready in its turn for onward displacement. 
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Applied Mechanics In short, one complete rotation of the worm corresponds to the rotation of 
the wheel by an angle θ given by 

NN
π

=π×=θ
221 radians  radians, 

where N = the number of teeth of the worm-wheel. 

If effort P is applied at the end of a lever (length = L) attached to the worm 
at right angles to its length and the load W, hung by rope wound round a 
drum (radius R) rigidly fixed to the worm-wheel, we shall have, 
corresponding to one full rotation of the worm, 

y = 2π L   and  R
N

Rx ×
π

=×θ=
2  

V. R. .N
R
L
⋅=              . . . (3.25) 

(g) Differential Axle and Wheel 

In this machine a stepped axle is used in an ingenious manner to obtain a 
large mechanical advantage which is necessary when hoisting a very heavy 
loads (Figure 3.28). 

 

 

 

 

 

 
 

 

 

 
 

 
Figure 3.28 : Differential Axle and Wheel 

As shown in the figure, a stepped axle (called the differential axle) with 
diameters d1 and d2 is provided with bearings BB1 and B2B  in which it can 
rotate about its own axis. The rope supporting the load has its one end tied 
to the smaller stepped part at K, wound clockwise (as seen in the direction 
of the arrow ‘a’) several times round it, then taken downwards and around a 
floating pulley X, then up again to be wound clockwise round the bigger 
stepped part and finally fixed to it at L. The floating pulley X carries the 
load W. For applying the effort, we have the effort-pulley E (the ‘wheel’) 
rigidly fixed to the axle over which another rope is wound clockwise at the 
end of which effort P is applied. The diameter of E is D. The direction of 
winding of the load and effort-ropes should be carefully noted. 

It is now easy to see that if one complete clockwise rotation is given to the 
axle, E will rotate through 360o and the displacement ‘y’ of the point of 
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Frictionapplication of the effort P will be equal to πD. At the same time, the length 
of the load-rope which will be wound round the bigger stepped part will be 
‘πd1’ while that unwound and hence paid out from the smaller stepped part 
will be πd2. The net result will be that the load W will be raised by a 
distance. 

   
2

)( 21 ddx −π
=  

The V. R. of the machine, therefore, will be 

      
)(

2

2
)( 2121 dd

D
dd

D
x
y

−
=

−π
π

==           . . . (3.26) 

This shows that by either increasing D or more effectively by reducing the 
difference between d1 and d2, the velocity ratio can be increased by any 
desired extent. 

3.6.3 Law of Lifting Machine 
For any lifting machine, the relation between the values of the effort P required to 
lift gives load W, is called the law of that machine. Naturally the law will 
depend entirely on its velocity-ratio, the friction in its various moving parts which 
will in turn depend on their weights, its state of lubrication and maintenance, etc. 
Hence, for a given machine, the law can be established only after experimentation 
on it, observing the values of the effort actually required to lift specific loads. It 
has been experimentally found that the law is of the form 
                . . . (3.27) CmWP +=

where, m and C are constant for all loads, i.e. the relation is  a linear one  
(Figure 3.29). 

 

 

 

 

 

 

 

 
 

 
Figure 3.29 : Law of Lifting Machine 

It is seen from the actual P − W graph that with W = 0, an effort = C is required to 
move the load-hook alone with no load there. Or ‘C’ is the effort required to 
move only the components of the machine, against friction therein. If the  
velocity-ratio of the machine is V, then it is obvious that in ideal case (i.e. 

frictionless), P1, the ideal effort would be .
V
W

=  The graph of this effort P1 is also 

plotted in Figure 3.29. 
Drawing the ordinate LMN at abscissa, W, it has seen that the actual effort P 
required to lift the load W is given by LN = m W + C. Since the ideal effort for 
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lifting the load is given by MN

V
WP ==1  (see the figure), PF, the effort required to 

overcome the friction in the machine at the load W = P – P1 = LN  – MN = LM, 
which is the intercept between the two lines. It is given by  

   
V
WCmWPF −+= )(             . . . (3.28) 

Normally, the slope of the actual P/W graph = α = (tan –1 m) is greater than 

V
1tan 1−=β , the slope of the ideal P/W graph, and hence PF value increases with 

load. 

Efficiency of a Lifting Machine − Its Maximum Limit 

Since the efficiency 

   
V
1

P
W

R.V.
A.M.

×==η  

and, since P = mW + C, we have 

   
VCmW

W 1
)(
×

+
=η  

i.e.,  
V

W
Cm ⎥⎦
⎤

⎢⎣
⎡ +

=η
1        . . . (3.29(a)) 

This shows that when W = 0, η = 0, and as W increases, η also increases.  
Now as W → ∞, we can see that 

   
mVmV
1,1

maxor =η→η       . . . (3.29(b)) 

A typical graph of η vs. W is given in Figure 3.30. 

 

 

 

 

 
 

 
 

 
Figure 3.30 : Typical Efficiency Curve of a Lifting Machine 

Example 3.5 

For a lifting machine, it is observed that for loads of 500 N and 1500 N, 
efforts of magnitudes 50 N and 120 N respectively are required. 

(a) Determine the law of the machine. 

(b) If velocity ratio is 20, calculate the efficiency for a load of 3 kN. 
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Friction(c) Has the machine been ideal, what effort would have been required for 
the load in (b)? Hence, calculate the effort lost in friction at that load. 

(d) Calculate the maximum possible efficiency. 

Solution 

(a) Assuming the law to be P = mW + C 

 

We have  50 = m × 500 + C     . . . (i) 

and  120 = m × 1500 + C    . . . (ii) 

Solving Eqs. (ii) —  (i) gives : 70 = 1000 m, ∴  m = 0.07 

Substituting this in Eq. (i), we get 

C = 50 – 35 = 15 

∴ The law of the machine is 

P = 0.07 W + 15              . . . (iii) 

(and, obviously, P and W to be in N units). 

(b) P for 3 kN load (i.e., W = 3000 N), 

We have from Eq. (iii) above 

P3 = 0.07× 3000 + 15 = 210 + 15 = 225 N. 

%67.66
3
2

20
1

225
3000

3 ==×⎟
⎠
⎞

⎜
⎝
⎛==η

R.V.
A.M.  

(c) .150
20

3000 NPideal ==  

Effort lost in Friction = 225 – 150 = 75 N. 

(d) Max. Possible efficiency  .100
2007.0

11
×

×
==

mV
 

                 = 71.4 %. 

Example 3.6 

In a differential pulley block two pulleys have diameters of 20 cm and  
16 cm, respectively. 

(a) Calculate the velocity ratio. 

(b) Given that the efficiency at 30kN load being 60%, calculate the effort 
required. 

Solution 

d1 = 20 cm 

       d2 = 16 cm 

(a)   .10
)1620(

202
)(

2.
21

1 =
−
×

=
−

=
dd

dRV  

(b) M. A. = V. R × η   
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Applied Mechanics ∴  M. A. at 30 kN load, = 10 × 0.6 = 6. 

∴  Effort to lift 30 kN load = 5
6

30
= kN. 

Example 3.7 

For a given value of the coefficient of friction μ  (or angle of friction φ ), 
calculate the pitch of the threads of a single-threaded screw jack  
(screw-diameter = d) which will have the maximum efficiency and calculate 
the value of this efficiency. 

Solution 

We have for a screw-jack, P = W tan (θ + φ) and 
θtan

1.. =RV , where θ = 

the angle of the equivalent inclined plane. 

∴  
)θ(tan

θtan
θtan

1η
φ+

=÷==
P
W

RV.
AM.     . . . (I) 

For  0
θ
η,ηmax =

d
d (treating θ as a variable). 

∴  0)(θsecθtanθsec)(θtan 22 =φ+−φ+

i.e. 
)(cos

1
cos
sin

cos
1

)(cos
)(sin

22 φ+θθ
θ

=
θ

×
φ+θ
φ+θ  

i.e. 
)(θcos

θsin
θcos

)(θsin
φ+

=
φ+  

or sin (θ + φ) × cos (θ + φ) = sin θ cos θ 

i.e. θ2sin
2
1)θ(2sin

2
1

=φ+  

∴ Either θ + φ = θ   or    2 (θ + φ) = 180 − 2θ. 

First alternative is not acceptable because it gives φ = 0. 

∴  We have θ + φ = 90o − θ or 
2

45o φ
−=θ  

Since ,tan
d
p
π

=θ  where p = the pitch of the screw 

∴ ⎟
⎠
⎞

⎜
⎝
⎛ φ

−π=θπ=
2

45tantan oddp  

      ..

2
tan1

2
tan1

d

⎥⎦
⎤

⎢⎣
⎡ φ
+

⎥⎦
⎤

⎢⎣
⎡ φ
−⋅π

=  

This gives the required pitch. 

Putting value of θ in (I), 
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  .

2
45tan

2
45tan

max

⎥⎦
⎤

⎢⎣
⎡ φ

+

⎥⎦
⎤

⎢⎣
⎡ φ

−
=η  

⎥⎦
⎤

⎢⎣
⎡ φ
+

⎥⎦
⎤

⎢⎣
⎡ φ
−

×

⎥⎦
⎤

⎢⎣
⎡ φ
+

⎥⎦
⎤

⎢⎣
⎡ φ
−

=η

2
tan1

2
tan1

2
tan1

2
tan1

max  

    

2

max

2
tan1

2
tan1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡ φ
+

⎥⎦
⎤

⎢⎣
⎡ φ
−

=η  

3.7 SUMMARY 

In this unit, you have studied laws of friction and problems involving dry friction.  
The relative sliding motion of one body on another body is resisted by forces 
called frictional forces. The sense of these frictional forces is such as to oppose 
the impending or actual sliding motion. When there is no impending motion, the 
frictional forces can be found by using the equations of static equilibrium. The 
limiting static friction is reached when relative sliding motion of the surfaces is 
impending and is given by : 

    NF μ=(max)

where, μ is the coefficient of static friction and N is the normal reaction on the 
surface concerned. 

When sliding motion occurs, the retarding friction force has the magnitude μKN 
where, μK is the coefficient of kinetic friction. 

The angle between the normal reaction, N, and the resultant reaction, R, is called 
the angle of friction when sliding motion of the surfaces is impending. This angle 
φ is related to the coefficient of friction by : 

     μ=φtan

The maximum angle of inclination of the inclined plane when the body kept on it 
is just on the point of moving down the plane, is called the angle of repose. 

The angle of repose is equal to the angle of friction. 

You have also studied in this unit, the engineering applications where dry friction 
plays an important role, e.g., in wedges used to lift heavy loads and screw jacks 
frequently used in presses and other mechanisms. By drawing free-body diagrams 
indicating correct sense of friction forces and applying equations of equilibrium, 
you can analyse such engineering problems. 

3.8 ANSWERS TO SAQs 

SAQ 1 

(a) The direction of frictional force, F, and normal reaction, N, are 
marked in Figure for Answer to SAQ 1(a). N is acting vertically 
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Applied Mechanics upwards and F is horizontally acting towards left, i.e. opposite to the 
direction of tending motion. 

 

 

 

 

 

 
 
 

 
Figure for Answer to SAQ 1(a) 

The horizontal force which tends to move the block A is 60 cos 45o 
acting towards right : 

   60 cos 45o = 42.426 N 

∴ The frictional force developed will also be 42.426 N but acting 
towards left, if the motion is not impending. 

If the coefficient of friction is 0.3, the limiting frictional force will be 
0.3 × normal reaction = 0.3 (150 – 60 sin 45o) = 32.272 N. 

As the actual frictional force is greater than limiting frictional force, 
the motion is impending. 

(b) If the slip is impending, the various forces and reactions will be acting 
in the directions as shown in Figure for Answers to SAQ 1(b). 

 

 

 

 

 

 

 
 
 
 

 
Figure for Answer to SAQ 1(b) 

Taking moments of all the forces about C, we get (with AB = l) 

0cos
2

sin
2

cos
2

sin
2

=α−α+α+α
lNlFlFlN BBAA   . . . (I) 

Also, 0=Σ xF  

Also,  BA FN =∴  
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Frictionand,       FB = limiting frictional force at B B

              = 0.3 NB 

      FA = limiting frictional force at A 

           = 0.2 NA

Putting these values in Eq. (I), we get 

0αcos
3.0

αsincos2.0αsin =−++ A
AAA

N
NαNN  

∴   αcos)2.0333.3(αsin2 −=

∴  5666.1αtan =  

∴   656257α o ′′′=

(c) Applying equations of equilibrium to block A, we get NA = WA = 30 N 

and, N4.83028.028.0 =×=== AA NFT  

∴  Tension in the string = 8.4 N 

Now applying the equation of equilibrium to block B also, we get : 

030sin o =−+ BB WPN  

∴   PWN BB 5.0−=

         P5.050 −=

 

 

 

 

 

 

 
Figure for Answer to SAQ 1(c) 

and  P cos  30o  – FB  – T = 0 (FB BB = 0.22 NB) B

∴  04.8)5.050(22.0866.0 =−−− PP  

∴  04.811.011866.0 =−+− PP  

∴   4.194.811976.0 =+=P

∴  N877.19
976.0

4.19
==P  

∴ The minimum value of P just to move the system is 19.877 N. 

(d) The free-body diagram for the hinge, rigid rods and blocks A and B 
are shown in Figure for Answers to SAQ 1(d). 

Applying equations of equilibrium to the whole set-up, we get 

060cos60cos oo =− BA CC  
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and  060sin60sin oo =−+ WCC BA

W5774.0
60sin2 o ==

WC  

 

 

 

 

 

 

 

 

 
 

Figure for Answer to SAQ 1(d) 

Applying equations of equilibrium to block A, we get 

060sin o =−− AAA CWN  

but,  CA = 0.5774 W 

∴   o60sin5774.0 WWN AA +=

         = 800 + 0.5 W 

and   AAAA NFCF 25.0;060cos ,ando ==−

∴   060cos5774.0)5.0800(25.0 o =−+ WW

∴  02887.0125.0200 =−+ WW  

∴  N75.1221
1637.0
200

==W  

(Alternately, considering block B also, we will again get  
W = 1221.75 N.) 

Therefore, the value of load, W, when the block are just on the point 
of sliding is 1221.75 N. 

(e) The overturning moment due to force P about the left corner is  
P cos α (0.5) + P sin α (0.8) and the stabilising moment due to  
weight, W, about the left corner is 0.4 W. 

As the block does not overturn, we have : 

or  )sin8.0cos5.0(
4.0

α+α≥
PW  

∴  PW )sin2cos25.1( α+α≥     . . . (II) 
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FrictionApplying the equations of equilibrium when the block is just on the 
point of sliding, we get 

N + P sin α − W = 0  ∴  N = W − P sin α 

and F − P cos α = 0 

But F = 0.3 N,   (N = normal reaction) 

∴  α=α− cos)sin(3.0 PPW  

∴  )sin3.0(cos3.0 α+α= PW   

∴  PW )sincos333.3( α+α=               . . . (III) 

 

 
 
 
 

 
Figure for Answer to SAQ 1(e) 

Comparing Eqs. (II) and (III), we get 

1.25 cos α + 2 sin α = 3.333 cos α + sin α 

∴   sin α = 2.083 cos α 

∴   tan α = 2.083 

α = 64o 21′ 20 ″ and correspondingly W = (1.442 + 0.9014) P 

or,  P = 0.4266 W 

SAQ 2 

(a) (i) When the crate is about to move up, applying equations of 
equilibrium after resolving the forces along the normal to the 
inclined plane, we get 

P cos 30o − W sin 30o − F = 0 

∴  0.866 P = 5 × 0.5 + F = 2.5 + 0.25 N             
. . . (IV) 

 

 

 

 

 

 

 
Figure for Answer to SAQ 2(a) 

and N − P sin 30o − W cos 30o = 0, where W  = 5 kN . . . (V) 

∴  N = 0.5 P + 4.33 

Putting this value in Eq. (IV), we get 
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Applied Mechanics  0.866 P = 2.5 + 0.25 (0.5 P + 4.33) 

∴  0.741P = 3.5825 

∴           P = 4.835 kN 

This is the minimum value of P to move the crate in upward 
direction. 

(ii) When the crate is just on the point of moving down, the 
direction of friction force, F = 0.25 kN, will be acting upwards.  
Working on similar lines, we get, 

0.866 P = 2.5 − 0.25 (0.5 P + 4.33) 

∴  0.991 P = 1.4175 

∴  P = 1.430 kN 

This is the minimum value of P to keep the crate sliding down 
the plane. 

(iii) Considering the above two results, it can be concluded that the 
crate will be in equilibrium for the range of values of P between 
1.430 N and 4.835 N. 

(iv) If P = 5.2 kN (assuming F acting upwards) 

030sin30cos oo =+− FWP  

∴  oo 30cos30sin PWF −=

    kN00.2866.02.55.05 −=×−×=  

The negative sign indicates downward direction of the frictional 
force (i.e. our assumption was wrong). 

(b) Consider forces acting on block Q. Applying equations of equilibrium 
after resolving the forces normal and parallel to the inclined plane, we 
get 

  NQ — W cos 35o = 0 

∴   NQ =1.2 × 0.819 = 0.983 kN 

 

 

 

 

 

 

 

 
 

Figure for Answer to SAQ 2(b) 

and  035sin o =+− QFWT
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Friction∴   0983.02.035sin2.1 o =×+−T

∴   kN492.0=T

Now, consider forces acting on block P, 

Here T  − FP = 0 

∴   kN492.0=PF

∴   492.025.0 =PN

∴   kN968.1=PN

∴   kN968.1== PP NW

∴ To maintain the equilibrium, the minimum value of weight of 
block P is 1.968 kN. 

(c) If only block M is on the point of moving down then applying the 
equations of equilibrium, we get 

θ=θ= cos600cosMM WN  

  θ=θ= sin600sinMM WF  

But FM = 0.4 NM

∴  θ×=θ cos6004.0sin600  

∴  4.0tan =θ  

∴   58421o ′′′=θ

If both blocks together are on the point of sliding down the inclined 
plane, then working on similar lines and noting μ = 0.5, we get 

θ×=θ cos14005.0sin1400  

∴  tan θ  = 0.5 

∴   453326o ′′′=θ

As this angle is greater than 21o 48′ 5″, the block M will slide first. 

If θ = 15o, the motion is not impending. Frictional forces can be 
worked out from equilibrium equations 

o15sin600=MF  

        = 155.29 N 

 
 
 
 
 

 
Figure for Answer to SAQ 2(c) 

This is the frictional force between block M and block N. (Note : This 
is less than limiting frictional force which is 0.4 × 600 cos 15o  
= 231.82 N). 
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)N1400800600(...15sin1400 o =+=+== NMN WWWF ∵  

  = 362.35 N 

∴ The frictional force between the block N and the inclined plane  
is 362.35 N. 

SAQ 3 
(a) Here, the coefficient of friction is 0.25 

∴ The angle of friction φ = tan– 1 (0.25) =14.036° for all surfaces. 

∴ RA, RB, RB C and RD are making an angle of 14.036  to No
A, NBB, NC and 

ND, respectively when motion is impending. The suffixes A, B, C and 
D refer to wedge A, wedge B, block C and ground D, respectively. As 
wedge B is moving down, the frictional forces FA and FC will act 
upwards. 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
Figure for Answer to SAQ 3(a) 

Three forces, RB, RB D and W, are acting on block C (Refer to Figure for 
Answer to SAQ 3(a)) and apply the Lami’s theorem, we get 

 )036.14180(sin036.14036.1490(sin oo)ooo −
=

++
BRW

 

∴  )kN6(...,
072.118sin

964.165sin
o

o
== WWRB  

     
8824.0

2425.06×
=  

      = 1.649 kN 

At the contact surface of wedge B and block C, the reaction offered 
by B is equal to reaction offered by C 
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Friction∴   kN649.1== CB RR

Now, consider wedge B. Three forces RA, RC and P are acting as 
shown in figure. Note that contact surface between wedge A and B is 
inclined at 8o to the vertical. 

Applying Lami’s theorem, we get 

 
)036.2290(sin)036.22036.14180(sin ooooo +

=
−−

CRP  

∴  kN649.1
036.112sin

928.143sin ando

o
== C

C RRP  

∴  
9269.0

5888.0649.1 ×
=P  

      = 1.0475 kN 

∴ The minimum load, P, required to push the block horizontally 
is 1.0475 kN. 

(b) The coefficient of friction of all surfaces of contact is 0.3. Therefore, 
the angle of friction will be  for all surfaces.  
Three forces R

751416),3.0(tan o1 .e.i ′′′−

A, RC and W act on the heavy block as shown in Figure 
for Answer to SAQ 3(b). 

(Note : A and C denote wedges and D ground.) 

Applying Lami’s theorem, we get 

)10751416(2sin)10751416180(sin
)(

ooooo
or

+′′′
=

−′′′−
WRR CA  

∴  o

o

398.53sin
3.153sin8

== CA RR  

        kN478.4=

Consider left hand side wedge. Three forces, RA, RD and P, act on it as 
shown in Figure for Answers to SAQ 3(b), we get 

 

 

 

 

 

 

 

 

 
Figure for Answer to SAQ 3(b) 

  
)90(sin)102180(sin ooo φ+

=
−φ−

ARP  
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φ
+φ

=
cos

)102(sin o
ARP  

     o

o

699.16cos
398.43sin478.4

=  

     kN212.3=  

∴ The value of P to drive the wedges under the load is 3.212 kN. 

(c) (i) The force P1 to be applied at the end of the lever to raise the 
load up is given by 

)(tan
l1 φ+α= WrP  

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

=α −

r
p

2
tan 1  

and   μ=φ −1tan

Here P = pitch of the thread = 5 mm 

  d = mean diameter 

∴  01131
60

5tan o1 ′′′=⎟
⎠
⎞

⎜
⎝
⎛

π
=α −  

and   6243408.0tan o1 ′′′==φ −

   r = mean radius = 30 mm 

   l = Length of lever = 200 mm 

  W = 20 kN 

∴  )6243401131(tan
1
20

200
30 oo

1 ′′′+′′′××=P  

       = 3 tan (6.093o) 

       = 0.32 kN = 320 N 

(ii) To lower the load, P2 required is given by 

)(tanW2 α−φ=
t
rP  

       )0113162434(tan20
200
30 oo ′′′−′′′×=  

        )054.3(tan3 o=

       N160kN160.0 ==  

(c) To lift a load, the force required at the end of the lever is given by 

)(tanW1 φ+α=
l
rP  

         )(tan
1
2

400
25

φ+α××=  
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      )(tan125.0 φ+α=

65452
50

8tan o1 ′′′=
π

=α −  

5381112.0tan o1 ′′′==φ −  

Putting the values of α and φ, we get 

   o
1 225.14tan125.0=P

       = 0.03169 kN =31.69 N 

As ),2.0051.0( <μ<
πD
P  the screw jack is self locking. It cannot work 

in reverse direction as the angle of inclination is less than the angle of 
friction. 

Friction


	UNIT 3  FRICTION 
	Structure 
	3.1 INTRODUCTION 
	Objectives 

	3.2 LAWS OF FRICTION 
	3.3 PROBLEMS INVOLVING DRY FRICTION 
	SAQ 1 

	3.4 INCLINED PLANE 
	SAQ 2 

	3.5 WEDGE FRICTION AND SCREW FRICTION 
	3.5.1 Wedge Friction 
	  
	(   
	3.5.2 Screw Friction 
	SAQ 3 

	3.6 SIMPLE MACHINES 
	3.6.1 Some Basic Terms 
	3.6.2 Some Basic Machines 
	3.6.3 Law of Lifting Machine 

	3.7 SUMMARY 
	3.8 ANSWERS TO SAQs 


