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51 INTRODUCTION

In Unit 4, you have learnt how quantum physics emerged in order to explain certain
experimental results and natural phenomena which could not be accounted for by
classical physics. You have also studied the concepts of wave-particle duality and matter
waves given by de Broglie. We will explore.these concepts further in this unit. You
know that waves are spread al over space whereas particles are localised. So a single
wave would be inadequate for describing a red particle correctly. The question is. How
do we represent matter waves (or wave-particles) in space? For this purpose, we have to
introduce the concept of a wave packet.

. A discussion of wave packets leads us to another fundamenta principle of quantum
physics, namely, Heisenberg’s uncertainty principle. You will study some applications
of the uncertainty principle, in particular for the microscopic world. The uncertainty
principle was met with a great deal of opposition from stalwartsin physics, especialy
Albert Einstein. The debate amongst physicists, and in particular between Bohr and
Einstein about the validity of this principle makes a very interesting reading in the
history of quantum mechanics. In this unit we will give you a flavour of some.ideal
(thought) experiments which provided support for the uncertainty principle and
ultimately established it as one of the fundamental principles of quantum mechanics. In
the next unit, you will study the Schrédinger equation which is a mgor pillar of
guantum mechanics.

Objectives

After studying this unit you should be able to

explain the concept of a wave packet,

derive the relation between phase velocity and particle velocity,

apply Heisenberg's uncertainty principle to microscopic systems,

discuss the y-ray microscope, single slit and double dlit interference experiments in
support of the uncertainty principle.

5.2 MATTER WAVES

From the discussion in Sec, 4.3.2 of Unit 4, you know that classically, a particle can be
localised a a single point but a wave cannot. Thus, at least for the microscopic particles
for which the wave-particle dudity is significant, we are forced to abandon the classica
description of a particle. We have to ook for a new description which should be
consistent with: the de Broglie hypothesis. What should this new description of matter
waves associated with particles be like? Well, for one, matter waves should always be
asyociated spatially with the particle in such a manner that the resultant amplitude is
non-zero only in the neighbourhood of the particle:
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Now the de Broglie equation (4.11) yields
A
M = - p_ (5'])

A P

This equation shows that if Ap = 0 then AA =%0. That is, we are required to represent
a particle d definite momentum with a single wave of fixed wavelength. However, you
know that a wave of single wavelength and frequency is spread out in time and space.
Thus, it cannot be localised and cannot represent a particle. Can we find an intermediate
solution? If we associate some uncertainty with the momentum, i.e., if we take Ap » 0,
then Ah is aso finite. The following discussion shows that if afinite spread is allowed
in the wavelength, we can fruitfully exploit this to represent a microscopic particle.

Consider a simple situation in which two sinusoidal waves with dlightly different
wavelengths are superimposed. You have studied in the course PHE 02 (Oscillations and
Waves) that the character of the resultant waveis quite different fromthe individual
waves. For example, suppose we consider two travelling waves represented by

W, = A sin (ke - wt)
and WYy =A sn[K +dkx - (w+do )]

where A is their amplitude, k (=2r/A) is the wave number and w (=2nrv) is the angular
frequency. The superposition of these waves yields a resultant wave given by

V=Yi+V,

[c{)s (dk) x-—(d—zm)t:lsin (kx — wi)

iy

where we have ignored —ege apd déu in the sine term as they are infinitessimal

Fomparedsto k and . Fig. 5.1 shows a graph of . You can see that v has an

envelope equal to 2A-cos (_di x= '@;—— t) modulating the sine wave given by

.Sin (kx - of).
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Fig. 5.1: A sketch of theresultant of the superposition of two travelling waves.

Similarly, by superimposing a very large number of waves having wavelengths close to
a central wavelength A, a wave packet such as shown in Fig. 5.2 can be constructed.
The superposition of these waves results in a variation in amplitude that defines the
shape of the wave packet. The wave packet has regular spacing between successive

maxima or minima, equal to the central wavelength A,. Thus the wavelength of the



wave packet isAq but at ‘any instant of time it is localized in a finite region of space,
Clearly, such a wave packet exhibits both wave and particle aspects,

Thus, in this new representation, a microscopic particle may be represented by a wave
packet. To sum up, we may define a wave packet as follows:

A wave packet is a group of'waves with dightly different wavelengths and
frequenciesinterfering with one another in such a manner that the amplitude of
the group (i.e., the envelope) is non-zero only in the neighbourhood of the

particle.

The spread of a wavepacket in wavelength (and in frequency) depends on the required
degree of localization in space (and time). You should note that the central wavelength
Ao iS given by the de Broglie equation (4.11).

How do we determine the velocity of a wave packet? Clearly, if the velocities of the
individual waves being superimposed are the same, the velocity with which the wave
packet travelsis the common wave velocity. However, in the case o de Broglie waves,
the wave velocity varies with wavelength; the individual waves do not travel a the same
velocity. Thus, the wave packet has a different velocity from the waves that compose it.
Let us now determine the phase velocity v, and the group velocity v, of the wave

packet.
You know that the phase velocity v, of a wave is given by v, = —(I?- . Hence from
Bgs. (4.2 and 4.11) of Unit 4, the phase velocity of the wave packet is given by
9

o _E
PT kT p

Putting £ = me2 and p = nv in this equation, we obtain

c2

phase velocity W= 5.2)

Since v < ¢, it is clear that the phase velocity of a wave packet associated with

a particleis greater than that of light. This should not disturb you because no
physical quantity like energy, information or signals etc., associated with the
wave, travels with the phase velocity. These entities move with the group velocity
which is given by

y = 40 _dE A
¢ ak dp J , 5.3)

AN
Now from the special theory of relativity

E2= p2c2+ mi ¢4, (5.4a)
E = me?, (5.4b)
and p = mv (5.4c)

Hence using these three equations we obtain

or

group velocity V=V 5.5)
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Fig. 5.2 - A wave packet.
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Therefore, the group velocity of the wave packet is nothing but the particle's
velocity.

Thus far you have learnt that a single wave is not enough to represent a particle. We
need to superimpose a group of waves which yields a wave packet travelling at a group
velocity equal to the particle's velocity. You have seen that there is an uncertainty Ap in
the momentum of the wavepacket and a spread A h in its wavelength. Before we proceed
further to analyse the implications of this discussion, we would like you to calculate the
phase velocity and group velocity o a wave packet.

SAQ 1

The energy of a free electron including its rest mass energy is 1 MeV. Calculate the
group velocity and the phase velocity of the wave packet associated with the motion of
the electron.

You have studied so far in this section that a moving particle must be regarded as a
wave packet which satisfies the de Broglie relation. We construct a localised wave
packet by superimposed waves which leads us to an uncertainty in its momentum and
wavelength.

The fact that a moving particle must be represented by a wave packet rather than a
localised entity suggests that there is a fundamental limit to the accuracy with which we
can measure the particle's position and momentum. For example, the wider the wave
packet is, the greater are the number of waves in it, and the better our chances are to
determine the particle's wavelength and hence its momentum. But, because the particle
can be anywherein the wave packet, we cannot determine its position with precision. If,
however, the wave packet is narrow, the particle's position is better defined, but now its
wavelength (or its momenturn) is difficult to determine. So the smaller is the uncertainty -
Ax in the particle's position, the larger becomes the uncertainty Ap in its momentum,

and vice versa,

Thus we can say that a direct consequence of the wave-particle duality is the
appearance of uncertainties (spreads) in the momentum and the position of a particle. If
one of them becomes definite, the other becomes completely indefinita. This situation is
in sharp contrast to that of classical mechanics according to which it is possible to
determine precisely the position and the momentum of a particle a any time t. In 1927,
Heisenberg (Fig. 5.3) advanced the above concept in the form of the uncertainty
principle.

5.3 THE UNCERTAINTY PRINCIPLE

Heisenberg discovered that the product of the position and momentum uncertainties of a
guantum object such as the wave packet is greater than or equa to
Planck’'s constant 4. Thus, according to Heisenberg's uncertainty principle

Ax Ap, 2 h (5.6a)

where Ax and Ap, are the uncertaintiesin the X component of the position and
momentum of a microscopic particle, respectively and A = A/2x.

Similar relationships hold for they and z components of the positions with their

respective momenta of the object. However, you should note that the Heisenberg
uncertainty principle does not impose restriction on the simultaneous and precise
measurements of X, y and p, or y, p; and p, etc. The restrictions are only on what are
called as conjugate variables, i.e., x aong with p,, y along with p, and z along vith p,.
Thus, we have

Ay Ap, 2 A, (5.6b)



AzAp, 2 A (5.6¢)
and ArAp, 2% (5.6d)

A general statement of Heisenberg's uncertainty principle can be given as follows:

The Uncertainty Principle

The values of two (canonically conjugate) variables cannot be simultaneously
measured with infinite accuracy (zero error) for a microscopic particle. The
product of uncertainties in the simultaneous measurement of conjugate variables
always has a value above a certain minimum (which is approximately equal to
Planck’s constant).

You should note that the uncertainty relation AxAp, 2 A has been obtained purely as a
mathematical property of a wave packet. Hence this relation is as fundamental as
wave-particle duality. Like wave-particle duality, the uncertainty principle, though
universally applicable is of significance only for microscopic systems.

According to Eq. (5.6a), for a microscopic system there cannot be a state in which p, as
well as x have definite values. We can never simultaneously ascertain values of both
position and momentum with arbitrary accuracy. If the position of the microscopic
particle is defined (measured) precisely then the uncertainty in its momentum will be
infinite, i.e., we will not have any idea of what its momentum is. Similarly, if we are

- able to precisely measure the particle's momentum, we will have no knowledge of its
position. Thus, for instance, in quantum mechanics, a microscopic particle's motion
cannot be described by equations like X = a sin @t because it implies definite velocity at
a definite position. In other words, the uncertainty principle does not allow the concept
of a trajectory. Thus, unlike classical physics, a definite path of a microscopic particle
with definite velocity at every point on the path is not possible in quantum meclzanics.
We will take up this point once again.

Another form of the uncertainty principle finds use in atomic processes. Sometimes we
might wish to measure the energy emitted in an atomic process in a time interval At.
Then we require an uncertainty relation between energy and time. For this we write
Eq. (5.6a) as

mAx pAp S 2

p m

22 up= PAP
2m ' m

The first factor is—AVf— or At, and since E =

Thus, we get

AEAt 2 A (5.7a)

where At is the uncertainty in the time localizability of the wave packet and AE
is the uncertainty in its energy. A more precise calculation based on the nature of
wave packets changes this result to

AEAt 2 % . | (5.7b)
Egs. (5.7a and b) tell us that in order for a microscopic particle to have a well defined
energy state, the state must last for a very long time — it must be stationary, If the
energy state is shortlived, e.g., the excited state of an atom, its energy is uncertain. This
is revealed in the width of spectral lines. Suppose the excited atom having life time At
makes a transition to a lower state. Then according to EQ. (5.7a) the energy (or the
'frequency) of the radiation emitted by the atom is uncertain by an amount %/A¢ Thus
the radiation will not be monochromatic as Av = AEIh, It will contain frequencies
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In several text books you will

come across the following form of

the uncertainty principle

h
AxAp 2> 4L
xAp, 3

You should keep in mind that the
right hand side expresses the order

of & The lower limit of 4/2 for
Ax Ap_is rnrdy nttnined,

Eq. (5.6n) holds more usualty or
even AxAp = k holds.
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between v + Av_and v = Av. And the line width Av of the spectral line, also known as
natural width, will be

1
Av = .
v T AT (5.7¢c)

Let us now consider an application of the uncertainty principle.

Example 1

Calculate the minimum uncertainty in the momentum of a 4He atom confined to a
0.40 nm region.

Solution

We know only that the 4He atom is somewhere in the 0.40 nm region; therefore
Ax = 0.40 nm, Equation (5.7a) gives us Ap, 2 #/Ax Using the equa sign to obtain the
minimum, we have

A 6.626 X 10-4 Js
ApIdmin = = = 2,64 %1025 kg ms-1,
(APmin Ax 21 % 040 x 10-° m ! §

This example gives us a reasonable picture of what happens to 4He atoms at low
temperaturesif we try to make them stay in one region by solidifying helium, Even &t
temperatures approaching absolute zero, the 4He atoms have considerable momentum.
Since 4He has a mass of 6.7 X 10-*7kg, a momentum spread of 2.64 X 10-25kg ms-!
means that & some time the 4He atom probably has a momentum of at least thet much,

or aspeed o at least

Ap _ 2.64 x 1025 kg ms!

= = 394 ms-!
m 6.7 x 1027 kg

V=

which is over 1400 km h-1! So even as T — 0 K, this large zero-point motion persists
because of the Heisenberg uncertainty principle. The associated kinetic energy is so
large that 4He will not solidify even as T'— 0 K, unless more than 20 atm of external
pressure are applied, This pressure pushes the atoms close enough together so that their
attractive binding forces will be large enough to hold the solid crystal together.

You may now like to work out an SAQ.

SAQ 2

(@ The average life time of an excited atom is about 10-8s, What is the order of the
natural width (Av) o the line emitted by the atoms?

(b) The radius of an atomic nucleusis typicélly 5 % 10-15m. What is the lower limit of
the energy that an electron must have to be in the atomic nucleus?

You should understand that the (theoretical) limits set by the uncertainty principle have
nothing to do with the accuracy of our measuring instruments. Even the most
sophisticated instruments shall be limited by the uncertainty principle. This concept was
found difficult to accept by many a leading scientist, including Albert Einstein. Hence, a
number of thought (ideal) experiments were proposed and debated in the Solvay
Congress held at Brusselsin 1930 to disprove the above principle but without any
success. The analysis of some of the thought experimentsillustrates very well the
physical implicationsof the principle. Therefore, we discuss them briefly in the next

section.
531 Some Thought Experiments

We will describe here some thought experiments that help us understand the uncertainty
principle better. All these attempts reflect a search for ways of violating this principle.



In this direction, they seek to determaine the position and momentum of a microscopic Mutter Waves and Uncextaloty
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Measurement of the position of an electron: The gamma ny microscope

Let us consider a conceptual experiment first discussed by Heisenberg which aitempts

to measure the position of electron as accurately as possible. This experiment consists of

an arrangement in which an electron is illuminated and its image is observed through a

micrscope (Fig. 54). Electrons travel in a given direction (the positive x-direction) in ;
the form of a well defined monocnergetic beam, i.e., the velocity of the eectronsis
known exactly. The position of an electron can be located by observing the light |
(photons) scattered by tho electron into the microscope. Clearly, the precison with

which the position of an electron can be determined is equa to the resolving power of

the microscope. Thusit is equal to the minimum distance by which the microscope

can resolve two objects, i.e.,

Ax = Alsin ¢

where & is the wavelength of tho photon used to observe the eectron and ¢ is the half i
angle subtentled by the aperture of the microscope at the position of the electron. This .
result is a standard result from optics. Thus, to obtain as accurate a postion

measurement as possible, light of short wavelengths must he chosen, such as y-rays, M

. . . |
Now in order that an electron be observed, it should scatter at least one photon into the I
microscope. In the process of scattering the photon would transfer momentum to the L g

electron, causing it to recoil. For instance, if the photon is scatered by 90°, the
momentum imparted to the recoiled electron aong x-direction would be equal to that of

the incident photon which is given by #/A. But the photon cen be scaitered at any angle \7
between 0° and ¢. Hence, the x-component of its momentum after scattering can lie L ? v
anywhere between 0 and p sin ¢, where p is its tota momentum. Since momentum is
conser\(ed, the magnitude of tho electron’s rgacoﬂ momentum aong x-direction is Fig. 54 : Posilion measurcient
uncertain by the same or a greater amount, i.e., of electran by
Helsenberg's Yoray
o h . microscope. Photons
Ap,2psin¢ = ‘i‘ sin ¢ from a source § are ;
scattered into a i
L microscope M fra -’
Thus the product of the two uncertaintiesis an elm,.f,, .mu,:;'nt
P
AxAp, 2 h

which is consistent With Heisenberg's uncertainty relation. It is evident that by taking A
smal enough (i.e., by using y-rays) Ax nay be made quite smal, This, howevar, would
increase Ap, such that the product of A X and Ap, is always finite and given by the i
uncertainty relation. kL

To gain further insight into the uncertainty relation let us look at one of the most
famous of these thought experiments : the single slit diffraction experiment, g

Single dlit diffraction experiment

Consider a highly collimated beam of photons moving aong the x-direction, su}ch thet
Px=po = h/hand p, = O. Let the beam be incident upon a single slit of width d
(Fig, 5.5). The photons are diffracted by the dit and the diffraction pattern is shown
in Fig. 5.5.

Since the dlit is of finite width 4, the position of the photons dong the y-direction is
uncertain by an amount 4, i.e., Ay = d. What can we say about the component of their
momentum in the y-direction?

All we know is that the photon will arrive at the screen somewhere within the
diffraction pattern but we don't know where. Thus the uncertainty in momentum iS
given by the angular spread of the pattern. Since most of the photons hit the screen
within the central naxi mum we can obtain a rough estimate of the spread in Py (ien

A p,) by confining ourselves to the analysis of the central maximum. From Fig. 5.5, you
can-see that for the central maximum, p, can take values ranging fram= p, sin 6 to

oy sin 8, Therefore,

Apy = 2py Sin0
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Fig. 5.5 : Single slit diffractlon experiment.

Now we know from the diffraction theory that the angular spread of the pattern is
inversely proportional to the width of the dlit.

sin 0 =i=—}"——
Ay

where A is the wavelength of incident light. Hence, we obtain

Ay Apy,=d (2py SN 6) = 2py A
or Ay Ap,=2h (l——h——)
Y apy \" P

This is consistent with the uncertainty relation Ay Ap, 2 A. Trying to reduce the width

of the dlit (to reduce Ay) leads to a greater spread of diffraction pattern increasing the

momentum uncertainty. Thus it is impossible to measure the position and momentum of
a microscopic particle precisely at the same time.

Finally, we describe the double slit experiment which is another milestone in
establishing the uncertainty principle.

The double slit experiment

In the double-dlit experiment, a beam of monoenergetic microscopic particles (such as
photons, electrons, protons etc.) are allowed to pass through two slits before faling on a
fluorosceet screen placed nearby (see Fig. 5.6).

If after some time we plot the total number of particles arriving at the screen as a
function o position, we observe an interference pattern. This is a characteristic of waves
and can be explained as follows: The matter wavés corresponding to the particle are
split at the two dlits and then interfere with one another, But beware of thinking of these

~ matter waves as classical waves, because the particles do arrive at the fluoroscent screen
in a particle like way: We get one localised flash everytime a particle strikes the screen.
However, the totality of spots made by a large number of particles looks like the wave
interference pattern. But then, is the wave-like behaviour seen only when we observe a
group of particles? What happens when only one particle arrives at the slit?

To answer this question, suppose we-make the particle beam very weak so that a any
one instant only one particle arrives at the dit. Do we till get an interference pattern?
Quantum mechanics says yes to this and experimental data seems to agree with this
viewpoint. It is not easy to accept this picture, You may ask: Can a single particle split,
pass through bath dlits and the two halves interfere with one another? Quantum

, mechanics says yes to all these questions. As Paul Dirac, one of the pioneers of

. SR - ' guantum mechanics, put it, "'Each photon [or a microscopic particle] interferes only with
' ' itself'. Why don't we find out whether it is correct by making a measurement?
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Fig. 5.6 : The double dit experiment.

The simplest way of doing this is by means of a thought experiment: Look with a
flashlight! We can focus a flashlight on the dlits to see which dlit the particle is redly ¥
passing through. What do we obtain? We find that the interference pattern is destroyed.
How do we explain this effect? This effect can be explained by the uncertainty
principle. As soon as we try to locate the particle and determine the dlit (A or B)
through which it passed, we lose information about its momentum. As we have seen in
the y-ray microscope experiment, the collision of the particle with the photon we are
using to observe it, affects its momentum and introduces an uncertainty in it.
Mathematically, to observe whether the particle goes through one of the dlits, the photon
wavelength must be smaller than at least half the distance d between the dlits:

(Ay < d/2) Therefore, its momentum (=h/A) must be larger than 24/d (as per the de
Broglie relation). The interaction of this photon with the particle will make its
momentum uncertain by an amount Ap, given by the uncertainty relation.

This uncertainty in the particle momentum introduces an uncertainty in its postion on
the screen. As shown in Fig. 5.6 it is given by

Apy _ 25 M ‘
Ay 2P 28 _ " ( AyApyzﬁ,Ay<d/2>

@ Po dp, dn
or -
‘ak S ;
Ay = 4 ‘ .‘

dn

where A, (=h/p,) is the de Broglie wavelength of the particle. Now the conditidn for
constructive interference is

dsine, = n kp
so th4t the distance between two adjacent maxima is
_ _ ak,
Y =@ SiNO,+; —asng, = ——

Thus
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In other words, the uncertainty in the position of the electron (produced as a result of
attempting to detect it near the slit) is of the order of the distance between the two
adjacent maxima. This uncertainty is enough to shift the interference pattern observed at
the screen up and down in the y-direction, by a distance roughly equal to the distance
between the two maxima. Such a random shift is just enough to smear out the
interference pattern so that no interference is observed. So if we attempt to determine
the glit through which the particle passes, the interference pattern is destroyed. The fact
of the matter is<that as soon as we lose information about the particle's momentum, we
must also lose information about its wavelength (as per de Broglie's relation). But if
there were interference fringes, from their spacing we would be able to measure the
wavelength. Thus the fringe pattern cannot exist any more — the interference pattern is
destroyed.

Complementarity Principle

The point is that the position and momentum measurements are really complementary, as
Bohr first pointed out; they are mutually exclusive processes. This means that we can
concentrate on the momentum and measure the wavelength of the particle from the
interference pattern and hence its momentum. But then we cannot tell which dlit the
particle went through. Or we can concentrate on the position and lose information about
the wavelength and momentum. You have seen that when we try to find out which dit
the particle passes through, we lose the interference pattern and hence, the information
about its wavelength and momentum. In his complementarity principle, introduced in
1928, Bohr described this situation by stating that the wave and particle aspects of a
physical system are complementary — when we localize (find out which dlit the particle
goes through), we revea the particle aspect; ard when we don't localize (don't worry
aboul which dlit the particle goes through), we revea the wave aspect. However, we
cannot revea both the aspects & the same time — they are complementary.

You may well ask: Is it that the microscopic particles are both wave and particle and
we can see only one attribute with a particular experimental arrangement? That is, they
possess well defined position and linear momentum at each instant but we are unable to
measure them simultaneously? Or, is it that the particles just do not possess well defined
position and momentum simultaneously'?While Eingtein was of the former view which
he never gave up, Bohr and Heisenberg took the latter viewpoint. Their interpretation of
quantum mechanics is aso referred to as the Copenhagen interpretation. Thus, the
uncertainty relation propagates the view that these uncertainties arise as a result of an
inherent limitation of nature; these are intrinsic to the nature of the quantum world.
However precise may be the measuring devices or the method of measurement, thereis
no escape from these uncertainties. The Heisenberg uncertainty principle is clearly a
consequence of wave-particle duality. It reflects the fact that quantum mechanics,
although a complete theory, provides a less detailed description of a physical system
than does classical physics. This description is governed by the complementarity
principle,

The uncertainty principle is a fundamental principle of quantum mechanics. You have
noticed the role of Planck’'s constant — it is so small that the limitations imposed by
the uncertainty principle are significant only in the domain of microscopic particles,
namely atoms, molecules, subatomic, nuclear and subnuclear particles. On this scale,
however, this principle is of great help in understanding many phenomena. Let us now
study some interesting applications of this principle.

5.3.2 Some Applications of the Uncertainty Principle

(8 The path of an object

To define the path of a particle in an exact manner we must know its exact postion
and velocity simultaneously, Such a knowledgeis not permitted by the uncertainty
principle, Hence the path (or the orbit) of an object in quantum mechanics is fot
defined. This invalidates Bohr's theory of the hydrogen atom which assigns position
and velocity simultaneously to the orbiting electron.

(b) Tho angular momentum of an object

The angular momentum L of an object iS defined as a cross product of its posfﬁoﬁ B



r and momentum p. Since r and p are not known simultaneously, L. is also
uncertain. However, as you will learn later, L? (=L.L) can have wel defined vaues.

(c) The sizeof an atom

You Can use uncertainty principle even to determine the approximate size of an
atom. Let us take the example of the hydrogen atom. A hydrogen aom has a proton
and an electron. If we assume the size of the atom to be a then the uncertainty in
the position of the electron is about a (the electron is inside the atom). Hence
according to Heisenberg uncertainty principle, the uncertainty in the electron’'s
momentum is given by Ap = #/a. The total (non-relativistic) energy of the eectron
isequa to

p? 1 e2
2m, 41 g a

For a stable atom, E will be minimum. Hence we replace p by Ala and equate dE /da to
zero. Thisyields

7'12

2
moe

a=4ng =054

and the corresponding vaue of the energy Eis

4 .
E=_L_M™E& __ 1366V

The negative sign of the energy shows that the electron is bound to the proton. You will
note that these values are in good agreement with the experimenta data.

(d) The existence of electrons insde the nudeus

In SAQ 2(b) you have used the uncertainty principle to show that the electrons do
not exist inside the nucleus. The size of a nucleusis of the order of one Fermi
(10-13m). Therefore, if eectrons are present inside nucleus, then the maximum
uncertainty in their position is Ax = 10-15m, Hence Ap will be A /Ax = 10-1% Js m-),
The total energy may be obtained from the relation E2 = p2c2 + mgc4, or E= pc
as myc? is much smaller than pc. Thus we obtain

E=3X10-11J = (3116) x 108eV = 200 MeV.

However, experimentally we find that during B-decay of a nucleus, electrons of energies
between 2-3 MeV are gjected. Hence we conclude that efectrons were not present in the
nucleus before the decay. '

{e) Zero point energy

According to kinetic theory, the kinetic energies of atoms oscillating about their
positionsin crystals are proportional to the absolute temperature. Hence, at absolute
zero, the atoms, according to this theory, would stop oscillating and would remain
fixed in their lattice position. But, according to uncertainty relation both position
and the momentum cannot be specified a the same time with complete accuracy.
This means that the atomic oscillators even at absolute zero would retain a certain
amount of oscillatory motion enough to obey the uncertainty relation. The energy
possessed by the atomic oscillator at absolute zero is termed as zero point energy.
Experimental studies of the motion of the atom at a tempernturc (0.001 K), quite
close to absolute zero, have shown the redlity of the zero-point energy.

You may like to end this section with an SAQ.

SAQ 3

A linear harmonic oscillator of mass m oscillates with a frequency v = EIT—L— -"51- .
H

wherek is its force constant. Use the uncertainty principle to show that the minimum
energy of the oscillator is kv/2.

Matter Waves and Uncertainty
Principle

5 min




An Introduction to Quantum
Mechanics

Y

Let us now summarise what you have studied in this unit.

24 SUMMARY

@ Wave-particle dudity and the localization of the particles leads to the representation
of a particle by a group o waves caled a wave packet. The group velocity v, of
the wave packet is equal to the particle velocity v and the phase velocity v, is
given by c2fv,

@ The concept of a wave packet leads to Heisenberg's uncertainty principle
according to which two canonically conjugate variables like x and p, or E and t
cannot be simultaneoudly determined with perfect accuracy. The product of the
uncertainties associated with these variables, i.e., Ax Ap, and AE At is of the order
of the Planck constant h:

Ax Ap, 2 4,
AEAt2h

e Some of the notable consequences of the uncertainty principle are as follows:
— The path of aparticleis not defined in quantum physics.
— Electronsdo not exist inside the nucleus.

— Atomic oscillators possess a certain amount o energy, known as the zero-point
energy, even a absolute zero temperature.
® Severa thought experiments, such as the {-ray microscope experiment, the single
slit diffraction experiment and the double slit experiment have helped in firmly
establishing the validity of the uncertainty principle.

5.5 TERMINAL QUESTIONS Spend 30 min

1. Show that the uncertainty priuciple can be expressed in the form AL A 8 2A, where
A L isthe uncertainty in the angular momentum of the particle and A8 is the

uncertainty in its angular position.

2. The radius o a hydrogen atom is 5.3 x 10-!! m. Estimate the minimum kinetic
energy of the electron in this atom using the uncertainty principle.

3. An atom remains in an excited state for 10-8 s. Calculate the uncertainty in its
energy.

4, Consider that a microscopic object is moving along the x-axis and the uncertainities
in its position are Axy and Ax, respectively, at £ = 0 and t = t. Show that A'x is
directly proportional to ¢ and inversely proportional to A xo. From this problem what
do you learn about the spreading of the waves associated with the motion of an

object?

56 SOLUTIONSAND ANSWERS

.Self-Assessment Questions

2,
1. Phase velocity v, = %
(]

and
P
Vg = —';
1 (3] -19
and met o JOXIOXIT Ty )0 1090 kg,

c? 9 x 10! m°s2



Therefore, p = [(17.8)2 = (9.11)2]VZ x 10-31 x 3 X 108 kg ms-!
= 458 x 1022 kg ms-1

, o458 x102kgmst
8 1778 x 10-30 kg

2.576 X 108m s

9
v = 8 -1 = . 8 -1
and b o7 X 108mst=35x 108 ms

2. (a) The order of the natural line width is

1 108

V= Hz = 1.6 x 107 Hz
2R At 2n

(b) The uncertainty in the electron's position is

Ax =5 X 1015 m, Therefore,

A > 6.626 x 10-34 Js

2 2 2.11 x 1020 kg m s-1
P Ay “ ax5%x 105 m 5

A

The momentum would also be of the same order if this is the uncertainty in it. This
suggests that the K E of the electron is far greater than its rest energy and we can write

KE. = pc so that

K.E. = pc 2 (2.11 x 1020 kg ms-1) x (3 X 108 ms-1)
26.33 x 10°12]
2 39 MeV

Thus the K.E. of an electron must exceed 39 MéeV for it to be a nuclear constituent.
Experiments indicate that electrons in an atom have only a fraction of this energy. Thus
we can conclude that electrons are not present in atomic nucle.

3. Theenergy of the linear harmonic oscillator is

Thisis a constant of motion. We can represent the constant value of E by means of
averages of the kinetic and potential energies over a cycle of motion by writing

R W
E= oy + > k<x2>
The average values of x and p should vanish for an oscillating particle. So we can
identify < p2> and < x2> with the squares of the corresponding uncertainties:
. <xB> = <ot (Ax)2 = (Ax)2
- 2
C A

and < p2s = 2+ 2 = 2= A

p2> = <p>2 T (Ap): = (Ap) (2Ax)
Thus

2 .
E=(Ap) +_1__.k (Ax)2=—..L+L(Ax)2
, 2m - 2 Bm(Ax)?2 2

since from the uncertainty principle AxAp 2 #£/2. To determine the minimum energy of
the oscillator we put '

dE R
d(A x) ‘//" ) . '

Matter Waves and Uncertainty :
Principle
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Mechanics or - 4"1 ( A x)3 + k(AX) = 0
1/2
or (Ax)? = ({;E) K

The minimum energy is

12
_hy 1 1k
or Epin —@ ,sincev = T (}T{) .

Terminal Quegions

1 Consider aparticle moving in acircle of radius r. If Ax is thearc length
corresponding to angular position A8, then we can rewrite Eq. (5.6) as

rAQ mAv 2 %
or AQ mrAyv 2 %

But L = mvr for the particle and AL = mAvr, since m and r are constant. Hence we
obtain

AL A8 2%
2. The uncertainty in the electron's position is
Ax=53x%x107'm

and

A 1.054 x 107 Js ~24
= = ‘ -1
Ap 2 53 % 10-7 199 X 107 kg m s

An electron with such alow magnitude of momentum behaves ailmost like a

classical particle [since A = J]])'f—* 10-10 m] and its kinetic energy is

Pr o (199 X 107242 kg?m? 572

=22 % 1078 J = 13.7eV
2m 2% (9.1 x 1073 kg)

K.E.=

3. The energy of the atom is uncertain by an amount

—-34
AE» T o LOSAX 1070 Is_ 054 5 10726 |
At 10735

4. If v, is the group velocity of the wave packet associated with the microscopic
particle then at time t

i

where A, is theinitial wavelength of the wave packet at time ¢ = 0. This isequal to
Axg, the uncertainty in the particle’s position at time t = 0. Thus, we have




h t Matter Waves and Uncertainty

Ax=—-—% = Principle

This result tells us that Ax, i.e., the spread of the wave-packet increases with time. The
narrower the packet is initially, the quicker it spreads. This is the hidden influence of
the uncertainty principle. If the confinement length Ax, is small, the uncertainty in its

: T i/ .
momentum and hence, its velocity is large \ Av = e This means that the wave-
0

packet Will contain many waves of high velocity much greéter than the average group
veocity pg/m. Due to the fluctuation in velocity, the distance covered by the particle
will also be uncertain by an amount Ax(t), i.e., its spread will be large.
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