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5.1 INTRODUCTION 
\ 

In Unit 4, you have learnt how quantum physics emerged in order to explain certain 
experimental results and natural phenomena which could not be accounted for by 
classical physics. You have also studied the concepts of wave-particle duality and matter 
waves given by de Broglie. We will explora,these concepts further in this unit. You 
know that waves are spread all over space whreas particles are localised. So a single 
wave would be inadequate for describing a real particle correctly. The question is: How 
do we represent matter waves (or wave-particles) in space? For this purpose, we have to 
introduce the concept of a wave packet. 

. A discussion of wave packets leads us to another fundamental principle of quantum 
physics, namely, Meisenberg's uncertainty principle. You will study some applications 
of the uncertainty principle, in parlicular for the microscopic world. The uncertainty 
principle was met with a great deal of opposition from stalwarts in physics, especially 
Albert Einstein. The debate amongst physicists, and in particular between Bohr and 
Einstein about the validity of this principle makes a very interesting reading in the 
history of quantum mechanics. In this unit we will give you a flavour of some.ideal 
(thought) experiments which provided support for the uncertainty principle and 
ultimately established it as one of the fundamental principles of quantum mechanics. In 
the next unit, you will study the SchrSdinger equation which is a major pillat of 
quantum mechanics. 

Objectives 
, 

After studying this unit you should be able to 

e explain the concept of a wave packet, 

e derive the relation between phase velocity and particle velocity, 

apply Heisenberg's uncertainty principle to microscopic systems, 

discuss the y-ray microscope, single slit and double slit interference experiments in 
support of the uncertainty principle. 

5.2 MATTER WAVES 

From the discussion in Sec. 4.3.2 of Unit 4, you know that classically, a particle can be 
localised at a single point but n wave cannot. Thus, at least for the microscopic particles 

, for which the wave-particle duality is significant, we are forced to abandon the classical 
description of a particle. We have to look for a new description which should be 
consistent with. the de Broglie hypothesis. Whnt should this new description of matter 
waves associated with particles be like? Well, for one, matter waves should always be 

with the p&icle in such a manner that the resultant amplitude is 
neighbourhood of the particle: 



~n Iniraduction to Quantum Now the de Broglie equation (4.11) yields 
Mechads 

A A AP - =-- 
A P 

(5.1) 

This equation shows that if Ap = 0 then AA =?. That is, we are required to represent 
a particle of definite momentum with a single wave offixed wavelength. However, you 
know that a wave of single wavelength and frequency is spread out in time and space. 
Thus, it cannot be localised and cannot represent a particle. Can we find an intermediate 
solution? If we associate some uncertainty with the momentum, i.e., if we take Ap > 0, 
then Ah is also finite. The following discussion shows that if a finite spread is allowed 
in the wavelength, we can fruitfully exploit this to represent a microscopic particle. 

Consider a simple situation in which two sinusoidal waves with slightly different 
wavelengths are superimposed. You have studied in the course PHE-02 (Oscillations and 
Waves) that the character of the resultaiit wave is quite different from the individual 
waves. For example, suppose we consider two travelling waves represented by 

yl = A sin (kr - wt) 

and yr2 = A sin [(k + dk)x - (w+dw )t] 

where A is their amplitude, k (=%A) is the wave number and w (=2m) is the angular 
frequency. The superposition of these waves yields a resultant wave given by 

Usingl the result 

sin0 + sin$ = 
. \  ' 

2cos (v) sin (q) where we have ignored - dk apd - d o  in the sine term as they are infinitesimal 
2 .: 2 '. , .. - ;z, - 

we get the value of yr. .&ompare$ito k and w. Fig. 5.1 shows a graph of yr. You can see that y has an 

envelope equal to 2An'cos - x - - t modulating the sine wave given by (? 7 )  
sin (kx - at). - .  

Fig. 5.1 : A sketch of the resultant of the superposltlon of two travelling waves. 

Similarly, by superimposing a very large number of waves havinkwavelengths close to 
a central wavelength &, a wave packet such as shown in Fig. 5.2 can be constructed. 
The superposition of these waves results in a variation in amplitude that defines the 
shape of the wave packet. The wave packet has regular spacing between successive 

22 maxima or minima, equal to the central wavelength b. Thus the wavelength of the 



wave packet is & but at*"ahy instant of time it is localized in a finite region of space. Matter Wavea and Uncerblmty 

Clearly, such a wave packet exhibits both wave and particle aspects, Prhclple 

Thus, in this new representation, a microscopic particle may be represented by a wave 
packet. To sum up, we may define a wave packet as follows: 

A wave packet is a group of'waves with slightly different wavelengths and 
frequencies interfering with one another in such a manner that the amplitude of 
the group (i.e., the envelope) is non-zero only in the neighbourhood of the 
particle. 

The spread of a wavepacket in wavelength (and in frequency) depends on the required 
degree of localization in space (and time). You should note that the central wavelength 
A,, is given by the de Broglie equation (4.11). 

How do we determine the velocity of a wave packet? Clearly, if the velocities of the 
individual waves being superimposed are the same, the velocity with which the wave 
packet travels is the common wave velocity. However, in the case of de Broglie waves, 
the wave velocity varies with wavelength; the individual waves do not travel at the same 
velocity. Thus, the wave packet has a different velocity from the waves that compose it. 
Let us now determine the phase velocity vp and the group vdocity vp of the wave 
packet. 

YOU h o w  that the phase velocity vp of a wave is given by vp = . Hence from 
k 

Eqs. (4.2 and 4.1 1) of Unit 4, the phase velocity of the wave packet is given by 

Putting B = mc2 and p = mv in this equation, we obtain 

phase velocity vp = - ,I 
Since v < c, it is clear that the phase velocity of a wave packet associated with 
a particle is greater than that of light. This should not disturb you because no 
physical quantity like energy, information or signals etc., associated with the 
wave, travels with the phase velocity. These entities move with the group velocity 
which is given by 

Flg. 5.2 : A wave packet. 

\\ 

Now from the special theory of relativity 

E2 = p2 c2 + mi c4, 

E = mc2, 
and p = mv 

Hence using these three equations we obtain 

group velocity vE = r 



An. Introduction to Quantum Therefore, the group velocity of the wave packet is nothing but the particle's 
Mechanics velocity. 

Thus far you have learnt that a single wave is not enough to represent a particle. We 
need to superimpose a group of waves which yields a wave packet travelling at a group 
velocity equal to the particle's velocity. You have seen that there is an uncertainty Ap in 
the momentum of the wavepacket and a spread A h  in its wavelength. Before we proceed 
further to analyse the implications of this discussion, we would like you to calculate the 
phase velocity and group velocity of a wave packet. 

Spend SAQ 1 
5 min 

The energy of a free electron including its rest mass energy is 1 MeV. Calculate the 
group velocity and the phase velocity of the wave packet associated with the motion of 
the electron. 

You have studied so far in this section that a moving particle must be regarded as a 
wave packet which satisfies the de Broglie relation. We construct a localised wave 
packet by superimposed waves which leads us to an uncertainty in its momentum and 
wave1 ength. 

The fact that a moving particle must be represented by a wave packet rather than a 
localised entity suggests that there is a fundamentaf limit to the accuracy with which we 
can measure the particle's position and momentum. For example, the wider the wave 
packet is, the greater are the number of waves in it, and the better our chances are to 
determine the particle's wavelength and hence its momentum. But, because the particle 
can be anywhere in the wavc packet, we cannot determine its position with precision. If, 

Fig. 5.3 : Werner Hcisenberg, 
1901-1976, was a 
German theoretical 
physicist. He was one 
of the founders of 
quantum mechanics, 
and received thc 
Nobel Prize in 1932. 

however, the wave packet is narrow, the particle's position is better defined, but now its 
wavelength (or its mornentum) is difficult to determine. So the sinaller is the uncertainty. 
Ax in the particle's position, the larger becomes the uncertainty Ap in its momentum, 
and vice versa, 

Thus we can say that a direct consequence of the wave-particle duality is the 
appearance of uncertainties (spreads) in the ~nornentum and the position of a particle. If 
one of them becomes definite, the other becomes completely indefinita. This situation is 
in sharp cmtrast to that of classical mechanics according to which it is possible to 
determine precisely the position and the momentum ~f a particle at any time t .  In 1927, 
Heisenberg (Fig. 5.3) advanced the above concept in the form of the uncertai~ity 
principle. 

5.3 THE UNCERTAINTY PRINCIPLE 

Heisenberg discovered that the product of the position and momentum uncertainties of a 
quantum object such as the wave packet is greater than or equal to 
Planck's constant h. Thus, according to Heisenberg's uncertainty principle 

where Ax and Ap, are the uncertainties in the x component of the position and 
momentum of a microscopic particle, respectively and A = h/2n, . 

' Similar relationships hold for the y and z components of the positions with their 
respective momenta of the object. However, you should note that the Heisenberg 
uncertainty principle does not inlpose restriction on the silnultaneous and precise 
measuremenb of x, y and p, or y, p, and p, etc. The restrictions are only on what are 
called as conjugate variables, i.e., x along with p, y along with py and z along with p,, 
Thus, we have 

Ay AP, 2 4, (5.6b) 



Az Ap, 2 A, 

and ArAp,  2 tl 

A general statement of Heisenberg's uncertainty principle can be given as follows: 

The Uncertainty Principle 

The values of two (canonically conjugate) variables cannot be simultaneously 
measured with infinite accuracy (zero ei-ror) for a microscopic particle. The . 
product of uncertainties in the simultaneous measurement of conjugate variables 
always has a value above a certain minimum (which is approximately equal to 
Planck's constant). 

You should note that the uncertainty relation A x A p ,  2 A has been obtained purely as a 
mathematical property of a wave packet. Hence this relation is as fundamental as 
wave-particle duality. Like wave-particle duality, the uncertainty principle, though 
universally applicable is of significance only for lnicroscopic systems. 

According to Eq. (5.6a), for a microscopic system there cannot be a state in which p, as 
well as x have definite values. We can never simultaneously ascertain values of both 
position and momentum with arbitrary accuracy. If the position of the microscopic 
particle is defined (measured) precisely then the uncertainty in its nlolnentuln will be 
infinite, i.e,, we will not have any idea of what its momentum is. Similarly, if we are 

a able to precisely measure the particle's momentum, we will have no knowledge of its 
position. Thus, for instance, in quantum mechanics, a microscopic particle's motion 
cannot be described by equations like x = a sin o t  because it implies definite velocity at 
a definite position. In other words, the uncertainty principle does not allow the concept 
of a trajectory. Thus, uulike classical plzj~sics, a definite path of a micr.oscopic particle 
with definite velocity at every poirlt on the patlz is not possible in quantum meclzanics. 
We will take up this point once again. 

Anotlter folm 01' the uncertainty principle finds use in atomic processes. Sometimes we 
might wish to measure thc cnergy emitted in an atomic process in a time interval At. 
Then we require an uncertainty relation between energy and time. For this we write 
Eq. (5.6a) as 

p2 The first factor is * or A t, and since E = - P A'P ' BE = - 
v 2m nz * 

Thus, we get 

where At is the uncertainty in the time localizability of the wave packet and AE 
is the uncertainty in its energy. A more precise calculation based on the nature of - 
wave packets changes this result to 

Eqs. (5.7a and b) tell us that in order for a microscopic particle to have a well defined 
energy state, the state must last for a very long time - it must be stationary, If the 
energy state is shortlived, e.g., the excited state of an atom, its energy is uncertain. This 
is revealed in the width of spectral lines. Suppose the excited atom having life time At 
makes a transition to a lower state. Then according to Eq. (5,7a) the energy (or the 

'frequency) of the radiation emitted by the atom is uncertain by an amount ftlAt. Thus 
the radiation will not be monochromatic as A V  = A Elh, It will contain frequencies 

Matter Waves and Uncertainty 
Prlnclplc 

In severnl text books you will 
come across the following fann of 
the uncertainty principle 

You should keep in mlnd that the 
right hand side expresses the order 
of h. The lower limit of 1112 for 
A x A 11, is rnrely nttnined; 
Eq. (5.6n) holds more ~usunlly or 
even AsApr 2 h holds. 



An Introduction to Quanhun between v + AV and v - Av. And the line width AV of the spectral line, also known as 
hfechanics natural width, will be 

Spend 
10 min 

(5.7~) 

Let us now consider an application of the uncertainty principle. 

Example 1 

Calculate the minimum uncertainty in the momentum of a 4He atom confined to a 
0.40 nm region. 

Solution 

We know only that the 4He atom is somewhere in the 0.40 nm region; therefore 
AX = 0.40 nm. Equation (5.7a) gives us Ap, 2 AIAx. Using the equal sign to obtain the 
minimum, we have 

I 

This example gives us a reasonable picture of what happens to 4He atoms at low 
temperatures if we try to make them stay in one region by solidifying helium, Even at I I 

temperatures approaching absolute zero, the 4He atoms have considerable momentup. I 
Since 'He has a mass of 6.7 x 10-27 kg, a momentum spread of 2.64 x 10-2s kg,m*6-l 
means that at some time the 4He atom probably has a momentum of at least that much, 
or a speed of at least 

which is over 1400 km h-l! So even as T+ 0 K, this large zero-point motion persists 
because of the Heisenberg uncertainty principle. The associated kinetic energy is so 
large that 4He will not solidify even as T +  0 K, unless more than 20 atm of external 
pressure are applied, This pressure pushes the atoms close enough together so that their 
attractive binding forces will be large enough to hold the solid crystal together. 

You may now like to work out an SAQ. 

SAQ 2 

(a) The average life time of an excited atom is about 10-8s. What is the order of the 
natural width (Av) of the line emitted by the atoms? 

(b) The radius of an atomic nucleus is typically 5 x 10-Ism. What is the lower limit of 
the energy that an electron must have to be in the atomic nucleus? 

You should understand that the (theoretical) limits set by the uncertainty principle have 
nothing to do with the accuracy of our measuring instruments. Even the most 
sophisticated instruments shall be limited by the uncertainty principle. This concept was 
found difficult to accept by many a leading scientist, including Albert Einstein. Hence, a 
number of thought (ideal) experiments were proposed and debated in the Solvay 
Congress held at Brussels in 1930 to disprove the above principle but without any 
success. The analysis of some of the thought experiments illustrates very well the 
physical implications of the principle. Therefore, we discuss them briefly in the next 
section. 

I 

5.3.1 Some Thought Experiments 
I 

I .  We will describe here some thought experiments that help us understand the uncertainty 
1 , 26 principle better. All these attempts reflect a search for ways of violating this principle. 



In this direction, they seek to determine the position and momenhlrn of a microscopic 
particle to an arbitrary accuracy. 

Measurement of the position of an electron: The gamma my micmc~pe 

Let us consider a conceptual experiment first discussed by Heisenberg which attempts 
to measure the position of electron as nccurntely os possible. This experiment consists of 
nn arrangement in which an electroi~ is illumi~~ated and its image is observed through a 
micr )scope (Fig. 5.4). Electrons travel in a given direction (the positive x-direction) in 
the form of a well defined monocnergetic beam, i.e., the velocity of the electrons is 
known exactly. The position of an electron can be located by observing the light 
(photons) scattered by tho electron into the microscope. Clearly, the precision with 
which the position of an electron call be determined is equal to the resolving power of 
the microscope. Thus it is equal to the ininin~urn distance by which the microscope 
can resolve two objects, i.e., 

where h is the wavelength of tho photon used to observe the electron and 4 is the half 
angle subtentled by the aperture of the microscope at the position of the electron. This 
result is a standard result from optics. Thus, to obtnin as accurate a position 
nlcasurement as possible, light of short wavelengtkrs must he choscn, such as y-rays, 

Now in order that an electron be observed, it should sci~ttcr at least one photon into the 
lnicroscope. In the process of scattering the photon would transfer momentum to the 
electron, causing it to recoil. For iostance, if the photon is scattered by 90°, the 
nlomentum imparted to the recoiled electron along x-direction would be equal to that of 
the incident photon which is given by tdh, But the photon can be scattered at any angle 
between 0' and 9. Hence, the x-component of its Inomentun1 after scattering can liu 
anywhere between 0 and p sin I$, where p is its total momentum. Since momentum is 
conserved, the magnitude of tho olectron's recoil mornentun1 along x-direction is 
uncertain by the same or n greater amount, i.e., 

h A h  2 > sin $I = - sin (P 
h 

Tl~us the product of the two uncertainties is 

which is consistent With Heisenberg's uncertainty relation. It is evident that by taking L 
small enough (i.e., by using y-rays) A x  may be mado quite small, This, howevar, would 
increase Ap, such that the pruduct of A x  iu~d Ailx is always finite and given by the 
uncertainty relation. 

To gain further insight into the uncertainty relation let us look at one of the most 
famous of these thought experiments : the single $lit diffractiorr experinrent. 

SlngIe slit diffraction experiment 

Consider a highly collimated beam of photons moving along tho x-dir~ction, sufh that 
px = po = h /k and p,, = 0. Let the beam be incident upon a single slit of widQ J 
(Fig, 5.5). The photons are diffracted by the slit and the diffrfractior, pattern is Ghuwn 
in Fig. 5.5. 

Since the slit is of finite width d, the position of the photons along the )!-direction is 
uncertain by an amount d, i.c., A y = d, What can we say about tho coppenent of their 
momentum in the y-direction? 

All we know is that the photon will arrive at thc screen somewllere within dc . 
diffraction pattern but we don't know where. ?%us the uncertainty in nloinentum is 
given by the angular spread of the pattern. Since most of the photons hi1 thc scmen 
within the central maximum, we can obtain a rough estimate of the spread in py (i,a., 
$4) by confining ourselves to the analysis of tho cenbal maximum. From Fig. 5.5, you 
danasee that for tha central maximum, pj,  can talc6 vduue ranging from - po sin Q to 
g ,sin 8, Therefom, 

Apy = 2p6 sin0 

Mattar W.aueu and ~racsrtdnlJ' 
wnclple 

Hg. 5.4 : ~os#lan nkemire~thenl 
aP ~lectron by 
Halse~~hcrg~a Y-ray 
micrcwcapc. Photons 
h1r  o souwc S are 
scoltered iato a 
microscope M fro!rb 
an clectrat~ lacnlcd sat 
P. 



Now we know from the diffraction theory that the angular: spread of the pattern is 
inversely proportional to the width of the slit. 

where h is the wavelength of incident light. Hence, we obtain 

Ay Apy = d (2po sin 0) = 2po h 

This is consistent with the uncertainty relation Ay Apy 2 A. Trying to reduce the width 
of the slit (to reduce Ay) leads to a greater spread of diffraction pattern increasing the 
momentum uncertainty. Thus it is impossible to measure the position and momentum of 
a microscopic particle precisely at the same time. 

Finally, we describe the double slit experiment which is another milestone in 
establishing the uncertainty principle. 

The double slit experiment 

In the double-slit experiment, a beam of monoenergetic microscopic particles (such as 
photons, electrons, protons etc.) are allowed to pass through two slits before falling on a 
fluorosceet screen placed nearby (see Fig. 5.6). 

If after some time we plot the total number of particles arriving at the screen as a 
function of position, we observe an interference pattern. This is a characteristic of waves 
and can be explained as follows: The matter wads  corresponding to the particle are 
split at the two slits and then interfere with one another, But beware of thinking of these - matter waves as classical waves, because the particles do arrive at the fluoroscent screen 
in a particle like way: We get one localised flash everytime a particle strikes the screen. 
However, the totality of spots made by a large number of particles looks like the wave 
interference pattern. But then, is the wave-like behaviour seen only when we observe a 
group of particles? What happens when only one particle arrives at the slit? 

To answer this question, suppose w6-qzake the particle beam Very weak so that at any 
one instant only one particle arrives at the slit. Do we still get an interference pattern? 
Quantum mechanics says yes to this and experimental data seems to agree with this 
viewpoint. It is not easy to accept this picture, you may ask: Can a single paqicle split, 
pass through both slits and the two halves interfere with one another? Quantum 
mechanics says yes to all these questions. As Paul Dirac, one of the pioneers of 
quantum mechanics, put it, "Each photon [or a microscopic particle] interferes only with 
itself '. Why don't we find out whether it is correct by making a measurement? 
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Fig. 5.6 : The daublc slit experiment. 

The simplest way of doing this is by means of a thought experiment: Look with a 
flashlight! We can focus a flashlight on the slits to see which slit the particle is really 
passing through. What do we obtain? We find that the interference pattern is destroyed. 
How do we explain this effect? This effect can be explained by the uncertainty 
principle. As soon as we try to locate the particle and determine the slit (A or B) 
through which it passed, we lose information about its momentum. As we have seen in 
the y-ray microscope experiment, the collision of the particle with the photon we are 
using to observe it, affects its momentum and introduces an uncertainty in it. 
Mathematically, to observe whether the particle goes tluough one of the slits, the photon 
wavelength must be smaller than at least half the distance d between the slits: 
(Ay < dl2) Therefore, its momentum (=hlh) inust be larger than 2Wd (as per the de 
Broglie relation). The interaction of this photon with the particle will make its 
momentum uncertain by an amount Ap? given by the uncertainty relation. 

This uncertainty in the particle momentum introduces an uncertainty in its position on 
the screen. As shown in Fig. 5.6 it is given by 

where A,, (=IJpd is the dc Broglie wavelength of the particle. Now the conditidn for 
constructive interference is 

d sine,, = n Ap 

so th4t the distance between two adjacent maxima is 

a LP y, =\a sin 8, + - a sin 0 ,  = -. 
d 

Thus 



An lntroduction to Qu~ntl~rn In other words, the uncertainty in the position of the electron (produced as a result of 
Mechanlca attempting to detect it near the slit) is of the order of the distance between the two 

adjacent maxima. This uncertainty is enough to shift the interference pattern observed at 
the screen up and down in the y-direction, by a distance roughly equal to the distance 
between the two maxima. Such a random shift is just enough to smear out the 
interference pattern so that no interference is observed. So if we attempt to determine 
the slit ihrough which the particle passes, the interference pattern is destroyed. The fact 
of the matter i d a t  as soon as we lose information about the particle's momentum, we 
must also lose information about its wavelength (as per de Broglie's relation). But if 
there were interference fringes, from their spacing we would be able to measure the 
wavelength. Thus the fringe pattern cannot exist any more - the interference pattern is 
destroyed. 

Complementarity Principle 

The point is that the position and momentum measurements are really complementary, as 
Bohr first pointed out; they are mutually exclusive processes. This means that we can 
concentrate on the momentum and measure the wavelength of the particle from the 
interference pattern and hence its momentum. But then we cannot tell which slit the 
particle went through. Or we can concentrate on the position and lose information about 
the wavelength and momentum. You have seen that when we try to find out which slit 
the particle passes through, we lose the interference pattern and hence, the information 
about its wavelength and momentum. In his complementarity principle, introduced in 
1928, Bohr desciibetl this situation by stating that the wave and particle aspects of a . 

pllysical system are complemei~tary - when we localize (find out which slit the particle 
goes through), we reveal the particle aspecj; and when we don't localizc (don't worry 
aboul which slit the particle goes through), we reveal the wave aspect. However, we 
cannot reveal both the aspects at the same time - they are complementary. 

You may we11 ask: IS it that the rllicroscopic particles are both wave and particle and 
we can see only one attribute with a particular experimental arrangement? That is, they 
possess well defined position and Iinear momentum at each instant but we are unable to 
measure them simultaneously? Or, is it that the particles just do not possess well defined 
position and momentum simultaneously'? While Einstein was of the former view which 
he never gave up, Bohr and Heisenberg took the latter viewpoint. Their interpretation of 
quanlutn mechanics is also rereferred to as the Copenhagen interpretation. Thus, the 
uncertainty relation propagates the view that thcse uncertainties arise as a result of an 
inherent limilation of nature; these are intrinsic to the nature of the quanlurn world. 
However precise may be the ineasuring devices or the method of measurement, there is 
no escape from these uncertainties. The Heisenberg uncertainty principle is clearly a 
consequence of wave-particle duality. It reflects the fact that quantum mechanics, 
altl~ough a complete theory, provides a less detailed description of a physicaI system 
than does classical physics. This description is governed by the complementarity 
principle, 

The uncertainty principle is a fundamental principle of quantum mechanics. You have 
noticetl the role of Planck's constant - it is so snlall that the limitations imposed by 
the uncertainty principle are significant only in the domain of microscopic particles, 
namely atoms, molecules, subatomic, nuclear and subnuclear particles. On this scale, 
however, this principle is of great help in understanding many phenomena. Let us now 
study some interesting applications of this principle. 

5.3,2 Some Applications of the Uncertainty Principle 

(a) The path of an object 

To define the path of a parlicle in an exact manner we must know its exact position 
and velocity sin~ulbneously. Such a knowledge is not pernlitted by the uncerta;lnty 
principle, Hence the path (or the orbit) of an object in quantum mechanics is not 
dcfined. This invalidates Bohr's theory of the hydrogen atom which assigns position 
nnd vclocity simultaneously to the orbiting electron. 

(b) Tho nngular momentum of an obj,ject 

Tha angular momentum L bf sa object is defined au n cross product of its '. 



r and momentum p. Since r and p are not known simultaneously, L is also Matter Wavcs and Uncertai~lty 

uncertain.   ow ever, as you will learn later, L2 (=L.L) can have well defined values. P*nciple 

(c) The size of an atom 

YOU can use uncertainty principle even to determine the approximate size of an 
atom. Let us take the example of the hydrogen atom. A hydrogen atom has a proton . 
and an electron. If we assume the size of the atom to be a then the uncertainty in 
the position of the electron is about a (the electron is inside the atom). Hence 
according to Heisenberg uncertainty principle, the uncertainty in the electron's 
momentum is given by Ap = fila. The total (non-relativistic) energy of the electron 
is equal to 

For a stable atom, E will be minimum. Hence we replace p by Ala and equate dElda to 
zero. This yields 

and the corresponding value of the energy E is 

The negative sign of the energy shows that the electron is bound to the proton. You will 
note that these values are in good agreement with the experimental data. 

(d) The existence of electrons inside the nucleus 

In SAQ 2(b) you have used the uncertainty principle to sllow that the eleclrons do 
not exist inside the nucleus. The size of a nucleus is of the order of one Fermi 
(10-15,). Therefore, if electrons are present inside nucleus, then the maximum 
uncertainty in their position is Ax = IO-lsm, Hence Ap will be A /Ax = 10-19 Js m-1. 

The total energy may be obtained from the relation E 2  = p2c2 t rnicd, or E = PC 

as nzoc2 is much smaller than pc. Thus we oblain 

E = 3 x 10-11 J = (311.6) x 108eV = 200 MeV. 

However, experimentally we find that during P-decay of a nucleus, electrons of energies 
between 2-3 MeV are ejected. Hence we conclude that ciectrons were not present in the 
nucleus before the decay. I 

(e) Zero point energy 

According to kinetic theory, the kinetic energies of atoms oscillating about their 
positions in crystals are proportional to the absolute temperature. Hence, at absolute 
zero, the atoms, according to this theory, would stop oscillatil~g and would remain 
fixed in their lattice position. But, according to wcertainty relation both position 
and the momentum cannot be specified at the same time with cmplete accuracy. 
This means that the atomic oscillators even at absolute zero would retain a certain 
amount of oscillatory motion enough to obey the uncertainty relation. The energy 
possessed by the atomic oscillator at absolute zero is termed as zero point energy. 
Experimental studies of the motion of the atom at a tempernturc (0.001 K), quite 
close to absolute zero, have shown the reality of the zero-point energy. 

You may like to end this section with an SAQ. 

SAQ 3 Spend 
5 min 

A linear harmonic oscillator of mass m oscillates with a frequency v = -. 
where k is its force constant. Use the uncertainty principle to show ha t  the minimum 
energy of the oscillator is hvl2. 



An Introduction to Quantum 
Mechanics 

Let us now summarise what you have studied in this unit. 

5.4 SUMMARY 

Wave-particle duality and the localization of the particles leads to the representation 
of a particle by a group of waves called a wave packet. The group velocity vg of 
the wave packet is equal to the particle velocity v and the phase velocity vp is 
given by c ~ / v .  

o The concept of a wave packet leads to Heisenberg's uncertainty principle 
according to which two canonically conjugate variables like x and p, or E and t 
cannot be simultaneously determined with perfect accuracy. The product of the 
uncertainties associated with these variables, i.e., Ax Ap, and A E A t  is of the order 
of the Planck constant h: 

e Some of the notable coi~sequences of the uncertainty principle are as follows: 

- The path of a particle is not defined in quantum physics. 

- Electrons do not exist inside the nucleus. 

- Atomic oscillators possess a certain amount of energy, known as the zero-point 
energy, even at absolute zero temperature. 

o Several thought experiments, such as tlie +ray microscope experiment, the single 
slit diffraction experiment and the double slit experiment have helped in firmly 
establishing the validity of the uncertainty principle. 

5.5 TERMINAL QUESTIONS Spend 30 lain 

1. Show that the uncertainty priuciple can be expressed in the form A L A 8 2 A, where 
A L is the uncertainty in the angular momentum of the particle and A 8  is the 
uncertainty in its angular position. 

2. The radius of a hydrogen atom is 5.3 x 10-l1 m. Estimate the minimum kinetic 
energy of the electron in this atom using the uncertainty principle. 

3. An atom remains in an excited state for 10-8 s. Calculate the uncertainty in its 
energy. 

4. Consider that a microscopic object is moving along the x-axis and the uncertainities 
in its position are Axo and Ax,  respectively, at t = 0 and t = t .  Show that A'x is 
directly proportional to t and inversely proportional to Axo. From this problem what 
do you learn about the spreading of the waves associated with the motion of an 
object? 

5.6 SOLUTIONS AND ANSWERS 

, Self- Assessment Questions 

c2. 
1. Phase velocity vp = - 

vs . 

and 

where p = (m2c2 - m,2c2)ln = (m2- mi)l/2 c 

and E m =-= lo6 X 1.6 X J = 1.778 x 10-30 kg. 
c2 9 x lot6 m2 s - ~  



Therefore, p = [(17.8)2 - (9.1 1)2]11i X l w l  X 3 X 108 kg m s-1 

= 4.58 x kg m 
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Principle / '  
<: 

= 2.576 x lO8m s-I 

- and vp - x 1 0 ~ m s - ~ = 3 . 5 x 1 0 8 m s - ~  
2.576 

2. (a) The order of the natural line width is 

(b) The uncertainty in the electron's position is 

Ax = 5 x 10-15 m. Therefore, 

The momentum would also be of the same order if this is the uncertainty in it. This 
suggests that the K.E. of the electron is far greater than its rest energy and we can write 

K.E. = pc so that 

K.E. = pc 2 (2.1 1 x kg ms-1) x (3 x 108 ms-1) 

2 6.33 x 10-12 J 

2 39 MeV 

Thus the K.E. of an electron must exceed 39 MeV for it to be a nuclear constituent. 
Experiments indicate that electrons in an atom have only a fraction of this energy. Thus 
we can conclude that electrons are not present in atomic nuclei. 

3. The energy of the linear harmonic oscillator is 

This is a constant of motion. We can represent the constant value of E by means of 
averages of the kinetic and potential energies over a cycle of motion by writing 

The average values of x and p should vanish for an oscillating particle. So we can 
identify c p2> and < x2> with the squares of +.he corresponding uncertainties: 

,. < x2> = < x>2 +   AX)^   AX)^ -_ 
and < p2> = < p>2 + (Ap)2 = (Ap)z = 

Thus 

1 .  

since from the uncertainty principle AxAp 2 A12. To determine the minimum energy of 
the oscillator we put I 



The minimum energy is 

In 
or Emin = - hV 2  , since v = (4 . 
Terminal Questions 

. 1. Consider a particle moving in a circle of radius r. If Ax is the arc length 
corresponding to angular position dB, then we can rewrite Eq. (5.6) as 

But L = trlvr for the particle and AL = nAvr, since m and r are constant. Hence we 
obtain 

2. The uncertainty in the electron's position is 

and 

An electron with such a low magnitude of momentum behaves almost like n 

h classical particle [since h = - .= 10-10 m] and its kinetic energy is 
P 

-24 2 '  2 2 2 
p2 (l.gg lo ) kg s' = 22 10-18 1 = 1 3 . 7 ~ ~  K.E. = - 1 
2m 2 ~ ( 9 . 1 x 1 0 - ~ ' k g )  

3. The energy of the atom is uncertain by an amount 

4. If vs is the group velocity of the wave packet associated with the microscopic 
particle then at time t 

I 

where &, is the initial wavelength of the wave packet at time t = 0. This is equal to 
Axo, the uncertainty in the particle's, position at time t = 0. Thus, we have 



This result tells us that Ax, i.e., the spread of the wave-packet increases with time. The 
narrower the packet is initially, the quicker it spreads. This is the hidden influence of 
the uncertainty principle. If the confinement length Axo is small, the uncertainty in its 

momenturn and hence, its velocity is large ( Av = - ixo ) . This means that the wave- 

packet will contain many waves of high velocity much geater than the average group 
velocity polin. Due to the fluctuation in velocity, the distance covered by the particle 
will also be uncertain by an amount Ax(t), i.e., its spread will be large. 

Matter Waves and Uncertainty 
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