UNIT 2 GROUPS

Structure
2.1 Introduction 29
Objectives
2.2 Binary Operations 29
2.3 WhatisaGroup ? 33
2.4 Propertiesof Groups 36
25 ThreeGroups 39
IntegersModulon
Symmetric Group
, Complex Nuntas
2.6  Summary 43
2.7 Solutions/Answers 43
Appendix : Complex Numbers 46

2.1 INTRODUCTION

In Unit 1 we have discussed some basic propertiesof sets and functions. In this unit:we are
going to discuss certain sets with algebraic structures. We call them groups.

The theory of groupsisone of the oldest branches of abstract agebra. It has many
applicationsin mathematicsand in the other sciences. Group theory has helped in developing
physics, chemistry and computer science. |[ts own roots go back to the work of the
eighteenth century mathematiciansL agrange, Ruffini and Galois.

In this unit we start the study of this theory. We define groupsand give some examples
Then we give details of some propertiesthat theelementsof agroup satisfy. Wefinally
discuss threewdl known and often used groups. In future units we will be developing group
theory further.

Objectives

After reading this unit, you should be able to

defineand give examples o binary operations;

defineand give examplesaf abelian and non-abeliangroups;

usethe cancellation lawsand laws of indicesfor various groups;

use basic propertiesd integers modulon, permutationsand complex numbers.

2.2 BINARY OPERATIONS

You arefamiliar with the usual operations of addition and multiplicationin R, Q and C.
These operations are examples of binary operations, aterm that we will now define.

Definition : Let S be a non-empty set. Any function * : Sx S— § iscaled abinary
operation on S.

So, abinary operation associatesa uniqueelement of Sto every ordered pair of ementsof
S.

For abinary operation « on § and (a,b) € SX S, wedenote *(a,b) by a*b.
We will use symbolslike +, —, X, @, o, * and A to denote binary operations.

Let uslook at some examples.
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iy tandxare binary operationson Z. In fact. we have+{a,b)=a+ b
and x (a,b)=axb¥a be Z, We will normally denote ax b by ab.

i)y Let £(S) betheset of all subsetsof S. Then the operationsu and N are binary
operationson @(S). sinceAUB and A N B arein g(S) for al sub- tsA and B of S,

iii) LetX beanon-empty set and F(X) be thefamily of dl functionsf : X — X. Then
the compositionof functions is a binary operation on #(X), since fog £ #(X) ¥ f,
g € F(X).

Weare now in a position to define certain properties that binary operations can have.
Definition : Let = be a binary operation on a set S. We say that

i) =isclosedonasubsetTof S,ifaxbs T¥abeT

iy isassociativeif,forala b,ce S, (axb)*c=ax(b*c).

iii) * iscommutativeif,fordl a, be S,a* b=b=*a

For example, the operationsof addition and multiplicationon R arg commutative as well as
associative. But, subtraction is neither commutative nor associative on R. Why? Isa-b =

b-aor (a-b)-c= a~«(b-c) 49 a, b, ce R ? No, for example, 1-2 # 2-{ and (1-2) -3 #
1-(2-3). Also subtraction is not closed on N ¢ R, because 1 € N,2 = N but 1-2 ¢ N.

Note that a binary operation on S isawaysclosed on S, but may not be closed on a subset
of S

Try the followingexercise now.
_

E1) Forthefollowing binary operations defined on R, determine whether they are
commutativeor associative. Are they closed on N?

aQ x®y=x+y-5
b)) x*xy=2x+y)

c)‘. xAy =i—2“—_X

foral x,y e R.

In calculationsyou must have often used thefact that a(b+c) = ab + ac and (b+c) a= bc+ ba
Ma, b, ce R. Thisfact saysthat multiplication distributes over addition in R. In general,
we have the following definition.

Definition ; If o and + are two binary operations on aset S, we say that  is
distributive over o if ¥ a, b,ce S, we havea {(boc)=(a=*b) o (ax c) and
(boc) *xa=(b=*a)o(c*a).

For example. let a * b:%gva,be R. Then a(b ac)=a( b;_C ):39—-;5—99

=ab=*ac,and

2
Hence, multiplicationis distributive over *,

(b*C)a=(Ei‘c]a=b—“‘—2tﬂ=ba*caVa,b,ce R.

For another example go back to E 4 of Unit 1. What does it say ? It says that the
intersectionof setsdistributes over the union of setsand the union of sets distributes over

the intersection of sets.

Let us now look deeper at some binary operations. You know that, forany as R, a+ 0 =a,
O+a=aanda+ (-a)=(-a) +a=0. Wesay that 0 is the identity element for addition and
(-3 is the negative or additive inverseof a In general, we have the following definition.

Definition : Let *.be a binary operation on aset S. If thereisan element e & S such that
¥ ae S,axe=aaudexa=a theneiscaled an identity element for




Forae S, Wwesay tha b= Sisaninversed a if axb=eand b« a=e Inthiscase we
usualy write b= a™!.
Beforediscussing examples of identity elementsand inversesconsider the following result.

In it we will prove the uniqueness of the identity element for %, and the uniqueness of the
inversed an element with respect to *, if it exists.

Theorem 1.: Let » be a binary operation on aset S. Then

g if * hesan identity element, it must be unique.
by If isassociativeand s € S has an inverse with respect to *, it must be unique.

Proof : @) Supposee and € are both identity elementsfor .,

Thene=ex €, sincee' isan identity element.
= €, sncee isan identity element.
That is, e = e'. Hence, the identity element is unique.

b) Supposethereexista, b= Ssuchthats *a=e=axsands*b=e=bxs, e being
theidentity element for », Then
azaxe=ax*(sxb) °
= (a* 9) * b, Since * is associdtive.
=exb=b,
That is,a=h.
Hence, theinversedf s is unique.

This uniquenesstheorem allows us to say the identity element and the inverse, henceforth.

A binary operation may or may not have an identity element. For example, the operation of
addition on N has no identity element.

Similar}y, an element may not have an inverse with respect to a binary operation. For
example, 2 € Z hasno inverse with respect to multiplicationon Z, doesit?

Let usconsider the following examples now.

Example 1 : If the binary operation @ : R x R — Risdefinedby a® b=a+ b -1,
provethat & has an identity. If x e R, determine the inverse of x with respect to 9, if it
exists.

Solution : We are looking for somee e Rsuchthata® e=a=s ® a¥ ac R. Sowe
wantee Rsuchthat ate-1 =a¥% as R. Obviously, e= 1 will satisfy this. Also,
1®a=a¥ ac R. Hence, 1 istheidentity element of .

For xe R, if bistheinverseof x, we should haveb & x = 1.

ie,btx-1 =1 ie, b=2-x Indeed, (2-x) ® x=(2-x)+ x-1=I.

Also, x® (2-x)=x+2-x-1=1, 8o, x! =2-x,

Example 2 : Let S be a non-empty set. Consider g (S), the st of all subsets of S. AreU
and N commutativeor associativeoperationson g (S)? Do identity elementsand inversesdf
elementsof g (S) exist with respect to these operations?

Solution : SinceAUB=BUAadANB=BnAW¥A,B=s %(S), the operations o
union and intersection are commutative. E 4 of Unit 1 also says that both operationsare
associative. You can see that the empty set ¢ and the set S are theidentitiesof the
operationsof union and intersection, respectively. SinceS # ¢, thereisno B € g(S) such
that SUB = ¢. In fact, for any A ¢ g (S) such that A # I$, A does not have an inverse with
respect to union. Similarly, any proper subset of S does not have an inverse with respect to
intersection.

Try thefollowing exercise now.

R
E2) 2 Obtain theidentity element, if it exists, for the operationsgivenin E 1,
b) For xe R, obtain x-! (if it exists) for each of the operationsgivenin E 1.

A
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Fig. 1 : Arthur Cayley
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When the set S under consideration is small, we can represent the way a binary operation on
S acts by atable.

Operation. Table

Let S beafiniteset and # be a binary operationon S. We can represent the binary operation
by a squaretable, called an operationtable or aCayley table. The Cayley tableis named after
the famous mathematician Arthur Cayley (1821-1895).

To write thistable, wefirst list the elements of S vertically as well as horizontally, in the
same order. Then we writea* b in the table at the intersection of the row headed by aand
the column headed by b

For example, if S= (-1, 0, 1) and the binary operation is multiplication, denoted by . ,
then it can berepresented by thefollowing table.

~1 0 1

=D .(-1 -1).0 (-1).1

0.(-1) 0.0 0.1

1.(=1) 1.0 11
1 =-1 =0 =1

Conversely, if wearegiven a table, we can define a binary operationon S. For example, we
can define theoperation » on S= {1,2,3} by thefollowing table.

* 1 2 3
1 1 2 3
2 3 1 2
3 2. 3 1

From thistable we see that, for instance, 1 * 2=2ad 2 3=2
Now2x1=3and1x2=2 .. 2%*1=#1+ 2.Thatis = iSnot commutative.

Again, (2+1)*3=3*3=1and2+ (1% 3)=2

- (2#1) *3%2# (1% 3). .., isnotassociative.

See how much informationa mere tablecan give!

Thefollowing exercisewill give you somepracticein drawing Cayley tables.

E3) Draw the operationtablefor theset g (S) (ref. Example 2), where
S = {0,1} and the operationisn.

Now consider thefollowing definition.
Definition : Let * be a binary operation on anon-empty st S and let a,, ...... A € S.
Wedefinethe product a, # ...... * a,.,, asfollows:
If k=1, a * a, isawell defined dementin S.
Ifag*...... * g isdefined, then
* —_ *
A F e T By =(8 7 * 3) * A




We usethis definition in the following result.

Theorem 2: Leta,, ...... ... beelements in a set S with an associative binary
operation*.Then
(@ %.n.xd *@ .o wag)=a, % ... * apn

Proof : Weuse induction on n. That is, we will show that the statement istrue for n = 1.
Then, assuming that it istrue for n—1, we will prove it for n.
If n = 1, our definition above gives us

(& * ...... *3@) %8, =a k... a,.q.

Now, assume that

(& * ..o @) * (@, seerenes a . )=a % e a

Then

(@ * vvene ¥ B @ ceeeeees 3

=(@ % % 8) B( (@ % oo *ag) ¥ag)

=((a, * ov... ) *x@ *.... * 3, y*3  sincex*isassociative
= (@ Amen-1) B Ay, Dy induction

=,k ereenas a 1 by definition.

Hence, the result holdsfor al n.
We will use Theorem 2 quite often in this course, without explicitly referring to it.

Now that we have discussed binary operations let ustalk about groups.

23 WHAT IS A GROUP ?

In this section we study some basic properties of an algebraic system called a group. This
algebraic system consists of a set with a binary operation which satisfies certain properties
that we have defined in Sec. 2.2. Let us see what this systemis.

Definition : Let G be a non-empty set and = be a binary operation on G. We say that the
par (G, ) isa group if

G 1) =isassociative; (G. %) iscelled asemigrounp if «
satisfies the properly G1. Thus, every

G2) Gecontainsan identity element efor , and group 153 seigroup.,

G3) every elementinG hasan inverse in G with respect to *.
We will now give some examples of groups.
Example 3 : Show that (Z, +) is a group, but (Z, . ) is not.

Solution : + is an associative binary operation on Z. The identity element with respect
to+is0,and theinverse of any n & Zis(—n). Thus, (Z,+) satisfiesG1, G2 and G3.
Therefore, itisa group.

Now, multiplication in Z is associative and 1 € Z isthe multiplicative identity. But does
every element in Z have a multiplicative inverse? No. For instance, 0 and 2 have no
inverses with respect to ‘.” . Therefore, (Z,.) is not agroup.

Notethat (Z,.) is a semigroup sinceit satisfies G1. So, there exist semigroups that aren't
groups!

Thefollowing exercise gives you two more examples of groups.

E4) Show that (Q, +) and (R, +) are groups.

Actually, to show that (G, ») isagroupit is sufficient to show that * satisfies the following
axioms.

G 1) xisassociative.
G2) Jee Gsuchthata*xe=a¥Mae G.
G3) Givenae G,3be Gsuchthata*b=e. 33
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What we are saying is that the two sets of axioms areequivaent. Thedifference between
them is the following:

In thefirst set we nesd to provethat e is atwo-sidedidentity and that the inverse b of any
ae Gstidfiesax b=eand b= a= e. In the second set we only need to prove that e isa

one-Sded identity and that the inverse b of any ae G only satisfiesa* b=e.

In fact, theseaxiomsare dso equivaent to

G1"y =« isassocidive.

G2) 3e= Gachthaeesa=aWas G
G3") Givenacs G3bs Gauchthaab=a=e

Clearly, if * satisfiesG1, G2 and G3, then it dlso satisfiesG1', G2' and G3'. Thefollowing
theorem tells us that if = satisfiesthe second set of axioms, then it satisfies thefirst set too.

Theorem 3: Let (G, * ) satisfy G1', G2' and G3,, Thene * a=a¥ a= G. Also, given
az G,if 3 be Gsuchthatax b=¢ thenb* a=e Thus, (G, *) satisfies G, G2 and
G3.

To prove this theorem, we need thefollowing result.
Lemmal: Let (G, *) satisfy G1', G2'and G3'. If 3 a< Gsuchthat a*'a=a thena=e
Proof : By G3' weknow that 3b= Gsuchthatax b=e

Now (ax a)* b=axb=e.
Al. ax (ax b)=a= e=a Therefore, by G1',a=e.

Now we will use thislemmato prove Theorem 3.

Proof of Theorem 3 : G1 holdssince G1 and G1' are the same axiom. We will next
provethat G3istrue Let a= G. By G3' 3 b= G such thata* b=e. We will show that

bxa=e. Now,
(bxa)x(bra)=(bx(axb))*a=(bke)*xa=bxa,

Therefore, by Lemma 1, b * a=e. Therefore, G3istrue.

Now we will show that G2 holds. Let as G. Then by G2',fora= G, a* e = a. SinceG3
holds, 3 b= Gsuchthaa* b=b+a=e Then
exa=(dxb)xa=ax(bxa)=axe=a.

That is, G2 dso holds.
Thus, (G, *) satisfiesG1, G2 and G3.

Now consider some more examplesof groups.

Example 4 : Let G = (£ 1, i}, i =V_I. La the binary operation be multiplication.
Show that (G,+) isa group.

Solution : Thetable of the operation is

1 -1 i <

1 1 -1 i -
-1 -1 1 4 i
i i —i -1 1
-i -i i 1 -1

Thistable showsys that a.l =a¥ as G. Therefore, 1 is the identity element. 1t also shows
wsthat (G,7) satisfiesG3'. Therefore, (G,+) isagroup.

Note that G = {1, x, x2, x3}, where x = i.




From Example 4 you can see how wecan use Theorem 3 to decrease the amount of checking
we have to do while proving that a system is a group.

Note that the group in Example 4 has only 4 elements, while thosein Example 3and E4
have infinitely many elements. We have the following definitions.

Definition : If (G, #) is a group, where G isa finite set consisting of n elements, then we
say that (G,+) isaFinite group of order n. If G isan infinite set, then we say that (G,x)
isan infinite group.

If » is a commutative, binary operation we say that (G, #) isacommutative group, or an
abelian group. Abelian groupsare named after the gifted young Norwegian mathematician
NielsHenrik Abel.

Thus, the group in Example 4 is afinite abelian group of order 4. The groupsin Example 3
and E4 are infinite abelian groups.

Now let us look at an example of a non-commutative (or non-abelian) group. Before doing
thisexamplerecall that an m X n matrix over aset S isarectangular arrangement of
elementsof S in mrows and n columns.

Example5: Let G betheset of al 2x 2 matrices with non-zero determinant. That is,
( a b
G=‘l ab,c,d € R, ad—bc %0
c d

Consider G with the usual matrix multiplication, i.e, for

o] * S Jur] P Jincar] B ]

C R
Show that (G, -) isa group.

Solution : First we show that . is a binary operation, that is, A, P« G = APe G.

Now,
det {A.P)=det A. det P# 0, sincedet A %0, det P=0.
Hence, A.P < Gforadl A, PinG.

1 0
We also know that matrix multiplication isassocialiveand[ 0 1 ]

a b
is the multiplicative identity. Now, for A =[ ¢ d ] in G, the mamx

r d _ -b
B =[ ad——cbc ad - bc

a
ad - bc

¢OandAB=|:
ad — bc

Lo ]
0 1.1
ad = bc

Thus, B = A-L. (Note that we have used the axiom G3' here, and not G3.) This shows that
the set of all 2x 2 matrices over R with non-zero determinant forms a group under
multiplication. Since

(2210002 1
HREREE

we see that this group is not commutative.

J issuch that det B =

Thisgroup is usually denoted by GL,{R), and iscalled the general linear group of order

2 over R. We will be using this group for examples throughout Blocks 1 and 2.

And now another example of an abelian group.

Example 6 : Consider the set of al translations of R?,

T= { f,p: R? — R? | f, (X.y) = (x+a, y+b) for somefixed a,b € R }

Groups

Fig 2 :

N.H. Abel (1802
1829)

a b
IfA=
c d

then ad-be is called the deter minant
(ij ? and is written as det A or
Al

det (AB) = (det A) (det B)

35




Elementary Group Theory Note that each element f,, in T is represented by a point (a,b) in R2 Show that (T,0) isa
group, where o denotes the composition of functions.

Solution : Let us seeif o is a binary operation on T.

Now f,}, o f, 4 (x,y) = f,}, (x+¢C, y+d) = (x+c+a, y+d+b)
= faac, bea (1Y) fOr any (x.y) € RZ

cfpofig=fuepas T

Thus, o isabinary operation on T.

Now, f pofyo=f,, ¥ € T

Therefore, f, , is the identity element.

Also, f, of , =0 ¥f, T

Therefore, f_,_yistheinversedf f,, < T.

Thus, (T,0) satisfies G1', G2' and G3', and hence is a group.

Notethat f, 0 f. 4 =f. yof,, ¥ 1, f.4 = T. Therefore, (T,0) is abelian.

Try thefollowing exercises now.

E5 LetQ*,R* and Z* denote the setsof non-zero rationals, reals and integers. Arethe
following statements true? If not, give reasons.

8 (Q*, ) isan abelian group.

b) (R*,.) isafinite abelian group.

0 (z*, .)isagroup.

d) (@), (R*,.) and (Z* ,) are semigroups.
E6) Show that (G,*) isa non-abelian group,

whereG = {(a,b)l abes R,a# O} and *isdefined on G by
(a,b) * (c,d) = (ac, be+d).

We will now look at some propertiesthat elements of a group satisfy.

2.4 PROPERTIES OF GROUPS

In thissection we shall give some elementary results about properties that group elements
satisfy. But first let us give some notational conventions.

Convention : Henceforth, for convenience, we will denote a group (G,#) by G, if
there is no danger of confusion. We will also denotea * b by ab, fora, be G, and say
that we are multiplying aand b. The letter e will continue to denote the group identity.

, Now let us prove a simple result.
Theorem 4 - Let G be a group. Then
a (@' = aforevery ac G.
b) (aby!=blalfordla be G.
Proof : (a) By the definition of inverse,
@t @h=e=(@") @
But,aa!=a!a=ealso, Thus, by Theorem1 (b), (a!)! =a
(b) Fora, bE G,ab e G. Therefore, (ab)! ¢ G and isthe unique element satisfying
(ab) (ab)! = (ab)~! (ab) =e.
However, (ab) (b~! a1) = ((ab) b-1) a
=(a(bbyal)
36 =(ae)a



=aa™ Groups

=e
Similarly, (b=t a1) (ab) = e.

Thus, by uniqueness of the inverse we get {(ab)~! = b~ a-!.
Note that, for agroup G, (aby™! = a~! b-""~+ a,he G only if G isabelian.

You know that whenever ba=caor ab=acfor a b, cin R*,
we can concludethat b= ¢. That is, we can cancel a Thisfact is true for any group.

Theorem § : For a b, c in agroup G,
g ab=ac= b=c. (Thisisknown as the left cancellation law.)

p) ba=ca= b=c. (Thisisknown as theright cancellation law.)

Proof : We will prove (a) and leave you to prove (b) (seeE 7).
(@ Letab=ac. Multiplying both sideson the left hand side by a™! < G, we get
a! (ab) = a! (ac)
= (@ta)b=(aTak
= eb=ec, e being theidentity element.
= b=c.
Remember that by multiplying we mean we are performing the operation .

E7) Prove (b) of Theorem 5.

Now use Theorem 5 to solve thefollowing exercise.

Eg) IfinagroupG, thereexistsan element g such that gx = g for al X & G, then show
that G={e}.

We now prove another property of groups.

Theorem 6 : For elementsa b in agroup G, the equations ax = b and ya= b have unique
solutions in G.

Proof : We will first show that these linear equations do have solulions in G, and then we.
~will show that the solutions are unique.

Fora,be G, consider a! b e G.Wefind that a(a™! b) = (aa~!) b=eb=b. Thus, a1 b
satisfies the equation ax = b, i.e., ax = b hasa solution in G.

But is this the only solution ? Supposex,, x, aretwo solutionsof a = b in G. Then
ax, = b= ax,. By the left cancellation law, we gel x, = x,. Thus, a-T bis the unique solution

in G.

Similarly, using the right cancellation law, we can show that ba-! is the unique solution of
ya=binG.

Now we will illustrate the property given in Theorem 6.

2 3 1 5
Example 7 :onsierA = [ inGL, (R) (see Example 5).
1 2 :IIB.- 0 4

Find the solution o AX = B.

Solution : From Theorem 6, we know that X = A-! B. Now,

2 3
Al= (see Example 5).
-1 2

2 2
s A'B =[ =X.
-1 3

In the next example-we consider an important group. 37
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Example 8 : Let S be a non-empty set, Consider g (S) (See Example 2) with the binary
operation of symmetric difference A, given by

AAB=(A\B)UB\A) ¥A,Be p(S5).

Show that (g/(S), A) isan abelian group. What isthe unique solution for the equation
YAA=B?

Solution - A isan associative binary operation. Thiscan be seen by using the facts that
A\B=ANB, (ANB)=A°UB%, (AUB) = A°NB°

and that U and nare commutativeand associative. A isalsocommutativesince AA B
=BAAVYA Beg@(S).

Also, ¢ istheidentity dement sinceA A¢ = A¥ A = £(S).

Further, any lementisitsown inverse, since AA A = ¢ ¥ A e @(5).
Thus, (g(S), A) isan abelian group.

For A, B in (g(S), A) we wantto solveY A A = B. But we know that A isitsown
inverse. So, by Theorem 6, Y = B A A~! = B A Aisthe unique solution. What we have also
proved isthat (B AA) AA=Bforany A, B in g(S).

Try the following exercise now.

E9) Consider Z with subtractionasa binary operation.Is (Z, -) agroup ? Can you
obtainasolutionfora-x =b%a be Z ?

And now |et usdiscussrepested multiplicationd an element by itself.
Deflnition : Let G beagroup. For a= G, we define

i) a%=e

ij) a"=a"l a,ifn>0

iiif) &= @M if n>0.

n iscalled the expoment (Or index) of theintegral power a"of a
Thus, by definition a! = 3 8% = a.a, 2’ = &3, and DON.

Note - When the notationused fur the binary operation is addition, & becomesna. For
example f aany ae Z,

na=0ifa=0,

na=1a+a+... +a(ntimes) ifn > 0;

na = (-4) +(-8) + ... + (-8) (-n times) if n < 0. - _

Let us now prove some | a/8 of indices for groupelements.

Theorem 7 : Let G be a group. Fora€ Gandm, n € Z,

8 @ '=at=@@') b) a®at=s™n ) (@)1 =g,

Proof : We prove (a) and (b), and |eave the proof of () to you (see E 10).

@ Ifn=0,cleardy (@)= =(a)p.
Now SUppOSe n > 0. Since aa! = e, Weses that

e=et=(axit

= (az)) (ag)...... (a)) (n times)
= a® ()7, since a and &' commute.
L@ =y,

Also, (a1 = £, by definition.
s @l = (@)= whenn>0.
If n <0, then (-n) > 0 and
+@)! = [arOH
= [(@'1, by the casen> 0
=ad



Also, @'p =@t Groups

= [(a )] =, by thecasen>0

= &.
So, in this case too,
(@ t=av= ("""

®) Ifm=00rn=0,thena™® = ana" Supposem =0 andn =0,

We will consider 4 situations.

Case 1 (m > 0 and n > 0) : We prove the proposition by induction on n.

If n = 1, thena™. a=am*!, by definition.

Now assume that a", a®! = a™+o-!

Then, a". a" = a™@*. @ = (&". a™') a= a™™!, a=a™=, Thus, by the principle of
induction, (@) holdsfor all m >0 and n > Q.

Case2(m <0andn<0): Then(-m) >0 and (-n)>0. Thus, by Case 1, a™® a™

= a~mm) = gdWM), Taking inverses o both thesidesand using (a), we get,

amtt = (a‘n, a"m)’l = (a““)‘l. (a‘")" =a™ma".

Case 3(m >0, n<0suchthat m+n20):Then, by Case 1, a™". a= = aw, Multiplying
both sideson theright by a = (a™®)!, weget a™r =aM. .

Case 4 {m > 0, n <0 such that m+n < 0): By Case 2, a™™ . a™* = a". Multiplying both
sdeson theleft by a"=(a™)-!, wegeta™n =an, a.

The cases when m < 0 and n > 0 are similar to Cases 3 and 4. Hence, aVn = an.a" for all
aeGandm,ne Z.

To finish the proof of this theorem, try E 10.

E10) Now youcan prove (c) o Theorem 7.
(Hint : Prove, by induction on n, for the case n > 0. Then provefor n < 0.)

We will now study three. important groups.

25 THREE GROUPS

In this section we shall look at three groups that we will use asexamples very often
throughout thiscourse — the group d mtegers modulo n, the symmetric group and the set
of complex numbers.

2.5.1 Integers Modulo n

Consider the set of integers,Z, andn = N. Let usdefinethe relation of congruenceon Z
by : ais congruent to b modulo n if n dividesa-b. We write thisasa= b (mod n). For
example, 4= 1 (mod 3), since3| (4-1).

Similarly, (-5) = 2(mod 7) and 30= 0 (mod 6).

= jsan equivalencereation (seeSec.1.4.), and hence partitions Z into digoint equivalence
classes called congruence classes modulo n. We denote the class containing r by 7.

Thus, T={me Z| m=r (mod n) }.
So an integer mbelongs to T ' for somer, 0 < r < n, iff n| (), i.e., iff r-m = kn, for some
ke Z.

& T={rtkn | ke Z}.

Now, if m 2 n, then the division algorithm saysthat m = ng+r for someq,re Z,0<r<n.
Thatis, m=r (modn), for some r=49, ....., n~1. Therefore,all the congruence classes

modulo n'are 0, T, ..., n—1 . Let Z, ={ 0,1, 2, ....n-1}. We define the operation + on



Elementary Croup Theory Is this operation well defined? T o check this, we haveto seethat if a=band c= din Z,,

then a+b = c+d.

Now, a= b (mod n) and c=d (mod n). Hence, thereexist integersk; and k; such thata- b =
kinand ¢ - d = k; n. But then (a+c)-(b+d) = (a-b) + (c—d) = (x; + ky)n.

= ‘ Thus, + is abinary operation on Z, .
o For example, 2 + 2= 0in Z,since2+ 2 =4 and 4=0(mod 4).
To understand addition in Z,, try the following exercise.

E11) Fill upthefollowing operation tablefor + on Z,.

+ 0 I 2

Wy

wi

(%]

Now, let us show that (Z,, +) is acommutative group.

i) 2+b=a+b =b+a =b+a¥a, be Z, ie,

addition is commutative in Z..

i)y a+(b+ )=+ (btec)=at (bte)

={a+b)+c =(at b+c=(@+Db)+c ¥ ab,c eZ,
i.e., addition isassociativein Z,.
i) a+0=2a=0+2a¥aec Z, ie., 0istheidentity for addition,

iv) ~or;eZy,3 n- Z,suchthata + n-a=n=0=n- ata.

Thus, every element a in Z, has an inverse with respect to addition.

The properties (i) to (iv) show that (Z,, +) isan abelian group.

Try thefollowing exercise now.

E 12) Describethe partition of Z determined by therelation ‘congruenée modulo 5'.

Actually we can also define multiplicationon Z,by a.b="ab. Then, % =% a
Md b eZ,Also, @b)c=a® c)¥ abce Z, Thus, multiplication in Z, isa
commutative and associative binary operation.

Z, adso hasamultiplicativeidentity, namely, T .

R But (Z,, .)is notagroup. Thisis because every element o Z,, for exampleq, does not have
Ly amultiplicative inverse.

But, suppose we consider the non-zero elementsdf Z,, , that is, (Z;, )- Isthisagroup? For

exampIer1 ={1, 2, 3) isnot agroup because. isnot even a binary operation on Z:, since

40 2.2=0 ¢ Z’,. But (Z:, .). isan abelian group for any prime p.




E13) Show that (Z5, ) isan abelian group.
(Hint : Draw the operation table.)

Let us now discuss the symmetric group.

2.5.2 The Symmetric Group

We will now discuss the symmetric group briefly. In Unit 7 we will discuss this group in
moredetail.

Let X bea non-empty set. We have seen that the composition of functions defines a binary
operation on the set #(X) of all functionsfrom X to X. This binary operation is associative.
I, the identity map, isthe identity in F(X).

Now consider the subset S(X) of F(X) given by
S(X)={f = F(X) | f is bijective}.

Sof e S(X) iff £ X — X exists. Remember thatf o £ = flof= Ix. This aso shows that
' E SX).

Now, for all f, g in S$(X),

@ofolfog)=Ix=("ogNo(gol), ik, gof= SX).

Thus, o isa binary operation on S(X).

Let us check that (S(X), o) isa group.

i) oisassociativesince(fog)oh=fo(go h&f, g h E SX).

iy Ixistheidentity element becausef oIx=Ixof ¥ f & S(X).

iii) f'istheinverseoff,for any f £ S(X).

Thus, (8(X), o) isa group. It is caled the symmetric group on X.

If the set X isfinite, say X = (1, 2, 3......n), then wedenote S(X) by S, andeachf € S,is
caled a permutation on n symbols.

Suppose we want to construct an element f in S,,. We can start by choosing £(1). Now, f(1)
can be any oneof the n symbols 1, 2, ..... n. Having chosen f(1), we can choose f(2) from
the set {1,2,.......,n} \ {f(1)}, i.e., in (n~1) ways. This is becausef is 1-1. Inductively, after
choosing f(i), we can choose f(i+1) in (n—i) ways. Thus, f can be chosen in (1 x 2x...X n)
=n! ways, i.e., S, contains n! elements.

For our convenience, werepresent f = S, by

1 2 n
( ) Q) e, i(n) ]
1 2 3 4
For example. 2 4 3 1 )reprments the function f : (1, 2, 3,4} = {1, 2,3, 4}:

f(1)=2,1(2)=4,f (3)=3,f (4) = 1. Theelements in the top row can be placed in any order
aslong as the order of the elements in the bottom row is changed accordingly.

213 4
Thus, also represents the same function f.
4 2 31 i

Try thisexercise now.

E 14) Consider S;, the set of all permutations on 3 symbols. This has 3! (= 6) elements.
Oneis theidentity function. I, Another is( 123 ) Can you list the other
21 3

four?
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fe 8, firesan clement x if f(x) =
X.

Now, while solving E 14 one of the elements you must have obtained isf = [ L2 3 j
2 3 1

Heref(l) = 2, f (2) =3 andf (3)= 1. Such a permutation iscalled acycle. In general we
have thefollowing definition.

Definition : We say that f & S, isacycle of length r if there are x,,...., x;in
X ={1,2,...., n} such that f(x;) = x;;; for | £i=r-1,f(x;)=x, and f(t) =tfor
t # Xy, ..., X In thiscase f is written as (xj.... X,).

For example, by f = (2 4 5 10) = §;5, we meanf (2)=4,f(4)=5,f (5) = 10,f (10)=2
and f (j) =jforj#2, 4,5,10.

1 2345 678910
ie., f=
1 4351067289 2
Note that, in the notation of a cycle, we don't mention the elements that are left fixed by the
permutation. Similarly, the permutation
S :
( 2 3)|sthecycle(1 253 4)in8s.

5
Now let us see how we calculate the composition of two permutations. Consider the

following examplein Ss.
B 1 23 45 1 2 3 45
“e. "(25431)"(534!2)

_ | 2 3 4 5
"( af(l) 0B oB(3) of@) -a[i(S)j

~—

B 1 2 3 4 5
"( as) of3) o@)  ol)  o2) )
rl 2 3

=2 4),
14 3 2 )()

L L

since I, 3and 4 are left fixed.

The following exercises will give you some practicein computing the product of elements
inS,

E 15) Calculate (13)o (1 2)inS;.

E 16) Write the Inversesof the following in 83 :
a) (1 2)
b) (1 32)

Show that {(i 2) o (1 3 2)1'#(1 2y o(1 3 2)-'. (Thisshows that in
Theorem 4(b) we can't write(aby-! =a- b-')

And now let us talk of a group that you may be familiar with, without knowing that it is a
group.
2.5.3 Complex Numbers

| n this sub-section we will show that the set of complex numbers forms a group with
respect to addition. Some of you may not be acquainted with some basic properties of
complex numbers. We have placed these properties in the appendix to this unit.

Consider the set C of al ordered pairs(x, y) of real numbers, i.e., WC take C = R X R.
Defineaddition (+) and multiplication (.) in C asfollows:

iy + (Xz~}’2) =(X1+ X3,y +Y2) and
(Xis ¥1) - (X2, y2) = (X X2 = ¥) Y2, X Y2 +X3y1)

Cfor (X, y)and (X3, ¥y) in C.




This gives us an algebraic system (C, +, ) caled the system of complex numbers. We must
remember that two complex numbers(x;, Y1) and (xz, y2) areequa iff x; =x; and

Y152

You can verify that + and . are commutativeand associative.

Moreover,

i) (0, 0) isthe additive identity.

i) for (x,y) in C, (=X, —y) isitsadditive inverse.

iii) (1,0) is the multiplicativeidentity.

iv) if (x,y) #(0,0) in C, then either x> 0 or y>> 0.

Hence, x2+ y2> 0. Then

X =y
(x,y). XX +y? xZ+y?

X_ =Y) -y X
-(x x2ayr Y xzeyrt Xoxiiy2t yx2+y2)

=(1,0

i X -y . T .
Thus, (XZ 2 X+ yzjlsthe multiplicativeinverse of (x,y) in C.

Thus, (C, +) isagroupand (C*, .) isagroup. ( As usual, C* denotes theset of non-zero
complex numbers.)

Now let us see what we have covered in this unit.

26 SUMMARY

In this unit we have

1) discussedvarioustypesadf binary operations.

2) defined and given examples of groups.

3) proved and used the cancellation laws and laws o indicesfor groupelements.

4) discussed the group o integersmodulo n, the symmetric group and the group o
complex numbers.

We have al so provided an appendix in which we list certain basic facts about complex
numbers.

2.7 SOLUTIONS/ANSWERS

El) g x®y=y@x¥x,ye R
Therefore, @  iscommutative.

X ®y)® z =(x+y-5) D z = (x+y-5)+2-5
= x+y+z-10
=xD(y Dz

Therefore, @ is associative.
@ isnotclosed on N sincel @© 1¢ N,
b) *iscommutative, not associative, closed on N.

¢ A isnot commutative, associativeor closed on N.

E2) & Theidentity elementwith respectto ® is5.
Supposee isthe identity elementfor x,

Croups

In Block 3 you will seethat (C.+, )

isasoaring and afield.
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E3)

E 4)
E5)

E 6)

E7)

Es8)

E9)

E 10)

44

Thenxse=x=2(xte)=x= e=- %,whid*n dependson x. Therefore,

thereis no fixed elemente in R for which X *x e=e+ x=x % x € R. Therefore,
* has no identity element.

Similarly, A has no identity element.

b) Theinverse o x with respectto @ is 10-x. Since thereis no identity for the
other operations, thereis no question of obtaining x1.

£ (S) = {6, {0}, {1}, {O.1} }.

So, thetableis
n ,¢ {0} {1} S
¢ ¢ o ¢ ¢
{0} ¢ {0} o {0}
{1} 9 ¢ {1} {1}
S ¢ {0} {1} S

Check that both of them satisfy G1, G2 and G3.
(@ and(d) aretrue.
(b) R* isan infiniteabelian group.

(© (Z*,.) satisfiesG1 and G2, but not G3. No integer, apart from £1, hesa
multiplicativeinverse.

(ab) * (c.d)) * (e, )

= (ac, betd) (e, )

= (ace, (bet+d)e + f)

=(a, b) *( (c,d) * (e, 1))

Thus, * satisfiesG1'.
(ab)x(l,0)=(a,b)¥ (ab)e G.
Therefore, G3' holds.

Therefore, (G,*) isagroup.

ba =ca=> (ba)a~! = (ca)a~! = b=c.

Letx € G. Thengx =g =ge. So, by Theorem5, x =e.
s G={e.

(Z, - isnot agroup since G1 is not satisfied.
Foranya be Z,a- (a-b)=h. So,a-x=bhasasolutionforany a,be Z.

When n= 0, the statement is clearly true.

Now, let n > 0. We will apply induction on n. For n= 1, the statement is true.
Now, assumethat it is truefor n—1, that is, (am)r-! = gm(n-i),
Then, @™)» = (am~i+1 =(@"""". a", by (b)

= am(n—l)_ am
= am(n—1+1), by (b)
=am,

So, (C)istrue™ n>0and¥ me Z

Now, et n < 0. Then (=) > O.



@" =[@m™1" by (a) Group:
= [ am-WT1, by thecasen >0

= [a—mn]—l
= amn, by ().
Thus, ¥ m,ne Z, (c) holds.
E 1D + R 3 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

E12) Zisthedisjoint union of the following 5 equivalence classes.

0 _={ ........ , =10, -5, 0, 5, 10, 15,....... }
T = (o 9= 4, 1,6, 1L, }
2 = { e =8, =3, 2,412, e Y
3 ={ . , =7, -2, 3, 8‘, 13, e }
4 ={ ... , =6, -1, 4,9, 14, ............. }-
E 13) Theoperation tablefor. on Z5 is
1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

. .. . . * o
It shows that. is an associative and commutative binary operation on Zg, 1 i the
multiplicative identity and every element has an inverse.

Thus, (Z5, .) is an abelian group.

E14)'23,123,123,123.
302 1)l 3 2)02 3 1)7l3 1 2

E 15) f=(1'3),g =(12).
‘ 1 2 3
(3 )G 15

1 3
(fg(l) fg(2) fg(a))

Thénfog

]

1
f(2) f(l) f(‘))

)(123)
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N B A N
E 16) 9 me_(12)_(2 : 3) =, 2 3)

just interchanging the rows.
= f7h=a2).

b) (13 27'=@2 3 1.

1 2 3
Now, (12) o (1 32)=(3 2 1)
Its inverseis 321 =(13
s (1 2 3)‘( )

On the other hand,
120132y =(120(123 =2 3 #0123

APPENDIX : COMPLEX NUMBERS

Any complex number can bedenoted by an ordered pair of real numbers (x, y). Infact, the
set of complex numbers is

C={ly) | xyeR}
Another way of representing (x, y) € Cisxtly, wherei=V-1.

Wecall x thereal part andy theimaginary part of x + iy.
The two representations agree if wedenote (x, 0) by X and (0, 1) by i . On doing so wecan

‘write

x+iy =(x,0)* (0, 1) (v,0)
=x,0+(0,y)
=y
andiZ =(0,1) (0, 1)=(-1,0)=-L.
While working with complex numbers, we will sometimes use the notation x-+iy, and
sometimes thefact that the elements of C can berepresented by pointsin R2.
You can see that
(1 +iy) + (Xg + iy2) = (X1, Y1) + (X2, ¥2)
=X+ X2, ¥1 +¥2)
=(X;+ X3) +1(y1 +y2), and

(X Fiyy) (Xp+1y2) = (X, Y1) (X2, ¥2)

= (X1 X2 = Y1¥2, X1¥2 + X2¥7)
= (X1 X2-y1y2) +1 (X1y2 + Xoy1).
Now, given a complex number, we will define its conjugate.
Definition : For a complex number z = x *+ iy, the complex number x + i (-y) iscalled
theconjugateof z. It isalso written asx — iy and isdenoted by z .
For z=x* iy, welist the following properties.
iy ztZisarea number.Infact,z+z=2 x.
ii) z.z =x‘+y2 anon-negativereal number.

i) 1z +2z, =2z 1% ,foranyz,ze C. Thisisbecause

(X H X i (Y +Y2) = A x) -1y +y)
\ = (X = 1yy) + (Xp—iy2)
;Zl +22.

‘iV) nzz = 2.7, foranyz,ze C.



Let us now see another way of representing complex numbers.

Geometric Representation of Complex Numbers

We have seen that acomplex number.z = x + iy isrepresented by the point (x, y) in the
plane. If O isthe point {(0,0) and P is (x, ¥) (see Fig.3), then we know that the distance

OP = Vx%+y?2. Thisiscalled the modulus (or the absolute value) of the complex
number z and isdenoted by | z |. Notethat Vx2 +y2 =0iff x=0and y = 0.

Now, let usdenote) z | by r and the angle made by OP with the positive x-axis by 8. Then
8iscaled an argument of the non-zero complex number z. If O is an argument of z, then
8+ 2nrisaso an argument of zfor all n € Z. However, thereisa unique value of these
arguments which lies in the interval (-, wt]. It iscalled the principal argument of x+iy,
and is denoted by Arg (x *iy).

From Fig.3 you can see that x =r cos#, y =r sin@. That is,
z = (rcos9, rsinf) = r(cos9+i sinf) = re®

Thisiscalled the polar form of the complex number (x+iy).

i6 i
Now, if z, :_(rle landz, =re 2, then
| )
2

Z)Ip =T 1€
Thus, an argument of z; z; = an argument of z; + an argument of =z,.
We can similarly show that if z, # 0,
an argument of %L = an argument of z; — an argument of z,.

2
In particular, if © isan argument of z (# 0), then (-8) isan argument of 2,
Weend by stating one of the important theorems that deal s with complex numbers.

De Moivre's Theorem : If z =r (cos® + i5in®) and n € N, then
z" = 1" (cos n@ * i sin nB).

Groups

Y
P(x,y)
r
1Y
&
0] X X
Fig. 3 . Geometric
reﬁresentation of x + iy
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