
UNIT 2 

Structure 
2.1 Introduction 

Objectives 

2.2 Binary Operations 

2.3 What is a GroQp 7 

2.4 Properties of Groups 

2.5 Three Groups 
Integers Modulo n 

Symmetric Group 

, Complex Numbers 

2.6 Summary 

2.7 SolutionsiAnswers 

Appendix : Complex Numbers 46 

2.1 INTRODUCTION 

In Unit 1 we have discussed some basic properties of sets and functions. In this unit: we are 
going to discuss certain sets with algebraic structures. We call them groups. 

The theory of groups is one of the oldest branches of abstract algebra. It has many 
applications in mathematics and in the other sciences. Group theory has helped in developing 
physics, chemistry and computer science. Its own roots go back to the work of the 
eighteenth century mathematicians Lagrange, Ruffini and Galois. 

In this unit we start the study of this theory. wetidefine groups and give some examples. 
Then we give details of some properties that the elements of a group satisfy. We finally 
discuss three well known and often used groups. In future units we will be developing group 
theory further. 

Objectives 

After reading this unit, you should be able to 

6 define and give examples of binary operations; 

6 define and give examples of abelian and non-abelian groups; 

6 use the cancellation laws and laws of indices for various groups; 
6 use basic properties of integers modulo n, permutations and complex numbers. 

BINARY OPERATIONS 

You are familiar with the usual operations of addition and multiplication in R, Q and C. 
These operations are examples of binary operations, a term that we will now define. 

Definition : Let S be a non-empty set. Any function * : S x S + S is called a binary 
operation on S. 

So, a binary operation associates a unique element of S to every ordered pair of elements of 
S. 

For a binary operation * on S and (a,b) E S x S, we denote *(a,b) by a*b. 

We will use symbols like +, -, X, @,o, * and A to denote binary operations. 

Let us look at some examples. 



Elementary Group Theory i) + and x are binary operations on 2. In fact. we have +(a,b)= a + b 
and x (a, b) = a x  b ++ a, b E 2. We will normally denote a x b by ab. 

ii) Let @(S) be the set of all subsets of S. Then the operations U and fl are binary 
operations on g (S) ,  since A U B and A fl B are in p ( S )  for all subc ts A and B of S. 

iii) Let X be a non-empty set and 7(X) be the family of all functions f : X -+ X. Then 
the composition of functions is a binary operation on F(X), since fog E F(X) f, 
g E F(W. 

We are now in a position to define certain properties that binary operations can have. 

Definition : Let * be a binary operation on a set S. We say that 

i) * is closed on a subset T of S, if a * b E T V a, b E T 

ii) * is associative if, for all a, b, c E S, (a * b) * c = a * (b * c). 

iii) * is commutative if, for all a, b E S, a * b = b * a. 

For ex'gmple, the operations of addition and multiplication on R arg commutative as well as 
associative. But, subtraction is neither commutative nor associative on R. Why? Is a-b = 
b-a or (a-b)-c = a-(b-c) 4) a, b, c 5 R ? No, for example, 1-2 + 2-1, and (1-2) -3 + 
1-(2-3). Also subtraction is not closed on N R. because 1 E N. 2 E N but 1-2 e N. 

Note that a binary operation on S is always closed on S, but may not be closed on a subset 
of S. 

Try the following exercise now. 

E 1) For the following binary operations defined on R, determine whether they are 
commutative or associative. Are they closed on N? 

for all x ,  y E R. 

In calculations you must have often used the fact that a(b+c) = ab + ac and (b+c) a = bc + ba 
++a,  b, c E R. This fact says that multiplication distributes over addition in R. In general, 
we have the following definition. 

Definition : If o and * are two binary operations on a set S, we say thal * is 
distributive over o if 4) a, b, c E S, we have a * (b o c) = (a * b) o (a * c) and 
(b o c) * a = (b * a) o (C * a). 

a t b  
For example. IEt a * b = -4) a, b E R. Then a(b a (;) = a 2 
= ab * ac, and 

Hence, multiplication is distributive over *. 

For another example go back to E 4 of Unit 1. What does it say ? It says that the 
intersection of sets distributes over the union of sets and the union of sets distributes over 
the intersection of sets. 

Let us now look deeper at some binary operations. You know that, for any a E R, a + O =a ,  
O + a = a and a + (-a) = (-a) + a = 0. We say tbat 0 is the identity element for addition and 
(-a) is the negative or additive inverse of a. In general, we have the following definition. 

Definition : Let *.be a binary operation on a set S. If there is an element c E S sucl~ that 
tr a E S, a * e = a a~rd e * a = a, then e is called an identity element for *. 



For a E ' S ,  we say that b E S is an inverse of a, if a * b = e and b * a = e: In this case we 
usually write b = a-I. 

Before discussing examples of identity elements and inverses consider the following result. 
In it we will prove the uniqueness of the identity element for *, and the uniqueness of the 
inverse of an element with respect to *, if it exists. 

Theorem 1 : Let * be a binary operation on a set S. Then 

a) if * has an identity ebment, it must be unique. 

b) if * is associative and s E S has an inverse with respect to *, it must be unique. 

Proof : a) Suppose e and e' are both identity elements for *. 
Then e = e * e', since e' is an identity element. 

= e', since e is an identity element. 
That is, e = e'. Hence, the identity element is unique. 

b) Suppose there exist a, b E S such that s * a = e = a * s and s * b = e = b * s, e being 
the identity element for *, Then 

a = a * e = a * ( s * b )  ' 
= (a * s) * b, since * is associative. 
= e * b = b .  

That is, a = b. 
Hence, the inverse of s is unique. 

This uniqueness theorem allows us to say the identity element and the inverse, henceforth. 

A binary operation may or may not have an identity element. For example, the operation of 
addition on N has no identity element. 

~ i m i l & ~ ,  an element may not have an inverse with respect to a binary operation. For 
example, 2 E Z has no inverse with respect to multiplication on Z, does it? 

Let us consider the following examples now. 

Example 1 : If the binary operation €B : R x R -, R is defined by a $ b = a + LI -1, 
prove that $ has an identity. If x E R, determine the inverse of x with respect to $, if it 
exists. 

Solution : We are looking for some e E R such that a $ e = a = e $ a V a E R. So we 
want e E R such that a + e -1 = a V a E R. Obviously, e = 1 will satisfy this. Also, 
1 @3 a= a V a E R. Hence, 1 is the identity element of $. 
For x E R, if b is the inverse of x, we should have b B) x = 1. 
i.e., b + x -1 = 1, i.e., b = 2-x. Indeed, (2-x) $ x = (2- x) + x-  1 =l. 
A l s o , x $ ( 2 - x ) = x + ~ - X - 1  =l .So,x7 '=2-X.  

Example 2 : Let S be a non-empty set. Consider p (S), the set of all sutisets of S. Are U 
and fl commutative or associative operations on P(S)? Do identity elements and inverses of 
elements of Q(S) exist with respect to these operations? 

Solution : Since A U B = B U A and A fl B = B fl A Y A, B E fi? (S), the operations of 
union and intersection are commutative. E 4 of Unit 1 also says that both operations are 
associalive. You can see that the empty set I$ and the set S are the identities of the 
operations of union and intersection, respectively. Since S # 9, there is no B c P(S)  such 
that S U B = I$. In fact, for any A E p ( S )  such that A # I$, A does not have an inverse with 
respect to union. Similarly, any propkr subset of S does not have an inverse with respect to 
intersection. 

Try the following exercise now. 

E 2) a) Obtain the identity element, if it exists, for the operations given in E 1. 

b) For x E R, obtain x-I (if it exists) for each of the operations given in E 1. 



Elementary Group Theory When the set S under consideration is small, we can represent the way a binary operation on 
S acts by a table. 

Operation. Table 

Let S be a finite set and * be a binary operation on S. We can represent the binary operation 
by a square table, called an operation table or a Cayley table. The Cayley table is named after 
the famous mathematician Arthur Cayley (1 821 -1 895). 

To write this table, we first list the elements of S vertically as well as horizontally, in the 
same order. Then we write a * b in the table at the intersection of the row headed by a and 
the column headed by b. 

For example, if S = (-1, 0, 1 )  and the binary operation is multiplication, denoted by . , 
then it can be represented by the following table. 

(-1) (-1) 

Fig. 1 : Arthur Cayley 

Conversely, if we are given a table, we can define a binary operation on S. For example, we 
can define the operation * on S = {1,2,3) by the following table. 

From this table we see that, for instance, 1 * 2 = 2 and 2 * 3 = 2. 
Now 2 * 1 = 3 and 1 * 2 = 2. :. 2 * 1 + 1 * 2. That is, * is not commutative. 

Again, (2 * 1) * 3 = 3  * 3  = 1 and2 t (1 * 3) = 2. I 

:. (2 * 1) * 3 + 2 * (1 r 3). :. , * is not associative. 

See how much information a mere table can give ! 

The following exercise will give you some practice in drawing Cayley tables. I 
E 3) Draw the operation table for the set p (S) (ref. Example 2), where I 

S = (0 , l )  and the operation is f l .  I 
Now consider the following definition. 

Definition : Let * be a binary operation on a non-empty set S and let a,, . . . . . .,ak+, E S .  
We define the product a, * . ... .. * ak+, as follows: 

If k = 1, a, * a, is a well defined element in S. 
If al * ,.... . * a, is defined, then 
a, * .... . . * ak+l = (a, * . ..... * a,) * ak+, 



We use this definition in the following result. 

Theorem 2 : Let a,, ...... ,a,+, be elements in a set S with an associative binary 
operation *.Then 
(a, * ..>... * a,) * (a,,, * ...... * a,,) = a, * ...... * a,,,. 
Proof : We use induction on n. That is, we will show that the statement is true for n = 1. 
Then, assuming that it is true for n-1, we will prove it for n. 
If n = 1, our definition above gives us 
(a, .......* a,) * a,,, = a, *...... * a,,,,, . 
Now, assume that 

....... ........ (a, .......a a,) * (a,,, a,+,-,) = a, * a,,,,. 

Then 
........ .......* . (a, a,) (a,,, a,,) . ....... = (a, *......* a,) ( (g,, * am,-,) * am+,) 

= ( (a, *......* a,,,) * (a,,, *......* a,,,,) ) * a,,, since * is associative . .......... = (a1 a,+,,-,) a,,,, by induction . ....... = a, * a,,, by definition. 

Hence, the result holds for all n. 

We will use Theorem 2 quite often in this course, without explicitly referring to it. 

Now that we have discussed binary operations let us talk about groups. 

2.3 WHAT IS A GROUP ? 

In this section we study some basic properties of an algebraic system called a group. This 
algebraic system consists of a set with a binary operation which satisfies certain properties 
that we have defined in Sec. 2.2. Lct us see what this system is. 

Definition : Let G be a non-empty set and * be a binary operation on G. W e  say that the 
pair (G, * ) is a group if 

G 1) * is associalive:' 

G 2) G contains an identity element e for * , and 

(G. *) is celled a semigroup if r 
satisfies Ihc properly GI. Thus, evcry 
group is n semigroup. 

G 3) every element in G has an inverse in G with respect to *. 
We will now give some examples of groups. 

Example 3 : Show that (Z, +) is a group, but (2,. ) is not. 

Solution : + is an associative binary operation on Z. The identity element with respect 
to + is 0, and the inverse of any n E Z is (-n). Thus, (Z, +) satisfies GI ,  G2 m d  G3. 
Therefore, it is a group. 

Now, multiplication in Z is associative and 1 E Z is the multiplicative identity. But does 
every element in Z have a multiplicative inverse? No:For instance, 0 and 2 have no 
inverses with respect to '.' . Therefore, (Z,.) is not a group. 

Note that (Z,.) is a semigroup since it satisfies G I .  So, there exist semigroups that aren't 
groups! 

The following exercise gives you two more examples of groups. 

Actually, to show that (G, *) is a group it is  sufficient to show that * satisfies the following 
axioms. 

G 1' ) * is associative. 

G 2 ' )  3 e ~  G s u c h t h a t a * e = a V a ~  G. 

G 3' ) Given a E G, 3 b E G such that a * b = e. 33 



- 
Elementary Croup Theory What we are saying is that the two sets of axioms are equivalent. The difference between 

them is the following: 

In the first set we need to prove that e is a two-sided identity and that the inverse b of any 
a E G satisfies a * b = e and b + a = e. In the second set we only need to prove that e is a 
one-sided identity and that the inverse b of any a E G only satisfies a * b = e. 

In fact, these axioms are also equivalent to 

G I.") * is associative. 

G 2") 3 e E G such that i * a = a V a E G. 

G 3") Given a E G 3 b E G such that b II a = e. 

Clearly, if * satisfies GI, G2 and G3, then it also satisfies Gl', G2' and G3'. The following 
theorem tells us that if * satisfies the second set of axioms, then it satisfies the first set too. 

Theorem 3 : Let (G, * ) satisfy Gl', G2' and G3;. Then e * a = a V a e G. Also, given 
a E G, if 3 b E G such that a * b = e, then b * a = e. Thus, (G, *) satisfies G1, G2 and 
G3. 

To prove this theorem, we need the following result. 

Lemma 1: Let (G, * ) satisfy Gl', G2' and G3'. If 3 a E G such that a * 'a = a, then a = e. 
Proof : By G3' we know that 3 b E G such that a * b = e. 
Now(a* a)* b = a * b = e .  
Also. a * (a * b) = a * e = a. Therefore, by Gl', a = e. 

Now we will use this lemma to prove Theorem 3. 

Proof of Theorem 3 : G1 holds since G1 and G1' are the same axiom. We will next 
prove that G3 is true. Let a E G. By G3' 3 b E G such that a * b = e. We will show that 
b*a=e.Now, 
( b * a ) * ( b * a ) = ( b * ( a * b ) ) * a = ( b * e ) * a = b * a .  
Therefore, by Lemma 1, b * a = e. Therefore, G3 is true. 

Now we will show that G2 holds. Let a E G. Then by G2', for a E G, a * e = a. Since G3 
holds,.3 b E G such that a * b = b * a = e. Then 
e * a = ( a * b ) * a = a * ( b * a ) = a * e = a .  
That is, G2 also holds. 
Thus, (G, *) satisfies G1, G2 and G3. 

Now consider some more examples of groups. 

Example 4 : Let G = {f 1, f i}, i = G. Let the binary operation be multiplication. 
Show that (G;) is a group. 

Solution : The table of the operation is 

This table shows ys that a.l = a V a E G. Therefore, 1 is the identity element. It also shows 
us that (G;) satisfies (33'. Therefore, (G,.) is a group. 



From Example 4 you can see how we can use Theorem 3 to decrease the amount of checking 
we have to do while proving that a system is a group. 

Note that the group in Example 4 has only 4 elements, while those in Example 3 and E4 
have infinitely many elements. We have the following definitions. , 

Definition : If (G, *) is a group, where G is a finite set consisting of n elements, then we 
say that (G,*) is a Finite group of order n. If G is an infinite set, then we say that (G,*) 
is an infinite group. 

~f * is a commutative* binary operation we say that (G, *) is a commutative group, or an 
abelian group. Abelian groups are named after the gifted young Norwegian mathematician 
Niels Henrik Abel. 

Thus, the group in Example 4 is a finite abelian group of order 4. The groups in Example 3 
and E4 are infinite abelian groups. 

Now let us look at an example of a non-commutative (or non-abelian) group. Before doing 
this example recall that an m x n matrix over a Set S is a rectangular arrangement of 
elements of S in m rows and n columns. Fig 2 : N.H. Abel (1802. 

1829) 
Example 5 : Let G be the set of all 2 x 2 matrices with non-zero determinant. That is, 

Consider G with the usual matrix multiplication, i.e, for 

P 9 ap+br aq+bs 
A = [ :  l ] a n d P = [  s ] i n G . A . P =  cptdr q+ds 1 
Show that (G, - ) is a group. 

Solution : First we show that . is a binary operation, that is, A, P E G A.P E G. 
Now, 
det (A.P) = det A. det P # 0. since det A f 0, det P ?t 0. 
Hence, A.P E G for all A, P in G. 

then ad-bc is called the determinant 
of A. and is written as det A or 
I A ~ :  

We also know that mahix multiplication is associative and [: :I 
is the multiplicative identity. Now, for A = [ a ] in G. the mamx 

d 

a is such that det B = - $OandAB= - - ad - bc 
ad - bc ad - bc 

k Thus, B = AT'. (Note that we have used the axiom G3' here, and not (33.) This shows that 

I the set of all 2 x 2 matrices over R with non-zero determinant forms a group under 
multiplication. Since 

we see that this group is not commutative. 

This group is usually denoted by GL2(R), and is called the general linear group of order 
2 over R. We will be using this group for examples throughout Blocks 1 and 2. 

And now another example of an abelian group. 

Example 6 : Consider the set of all translations of RZ, 

T = { fa,, : R2 -+ R2 I fa,, (r .y) = (x+a. y+b) for some fixed a.b E R .I 



Elementary Group Theory Note that each element fgb in T is represented by a point (a,b) in R2. Show that (T,o) is a 
group, where o denotes the composition of functions. 

Solution : Let us see if o is a binary operation on T. 

Now fa,, o fcSd (x,y) = fa,, (x+c, y+d) = (x+c+a, y+d+b) 

= fa,, b+d (x,y) for any (x,y) E R2. 

.'. fa,b O fc,d = fa-, b+d E T' 
Thus, o is a binary operation on T. 
Now, fa,, 0 f,,, = fa,, v fa,, E T. 
Therefore, f,,, is the identity element. 

Also, fa,, 0 f-,-, = fo," fa,, E T. 
Therefore, f -a,- , is the inverse of fa,, E T. 

Thus, (T,o) satisfies Gl', G2' and G3', and hence is a group. 
Note that fa,, o fC,, = fc,d.o fa., V fa,,, fc,d E T. Therefore, (T,o) is abelian. 

Try the following exercises now. 

E 5) Let Q*, R* and Z* denote the sets of non-zero rationals, reals and integers. Are the 
following statements bue? If not, give reasons. 

a) (Q*, :) is an abelian group. 

b) (R*, .) is a finite abelian group. 

c) (z*, .) is a group. 

d ) (Q*, .), (R*, .) and (z*, .) are semigroups. 

E 6 )  Show that (G,a) is a non-abelian group, 

where G = { (a,b) I a,b E R ,  a t 0 and * is defined on G by 

(a,b) * (c,d) = (ac, bc+d). 

We will now look at some properties that elements of a group satisfy. 

2.4 P.ROPERTIES OF GROUPS 

In this section we shall give some elementary results about properties that group elements 
satisfy. But first let us give some notational conventions. 

Convention : Henceforth, for convenience, we will denote a group (G,*) by G, if 
there is no danger of confusion. We will also denote a * b by ab, for a, b E G, and say 
that we are multiplying a and b. The letter e will continue to denote the group identity. 

, Now let us prove a simple result. 

Theorem 4 : Let G be a group. Then 

a) (a-I)-' = a for every a E G. 

b) (ab)-I = b-I a-* for all a, b E G. 

Proof : (a) By the definition of inverse, 

(a-l)-l (a-1) = e = (a-1) (a-1)- 1. 

But, a a-I = a-I a = e also, Thus, by Theorem 1 (b), (a-I)-' = a. 

(b) For a, b E G, ab E G. Therefore, (ab)-I E G and is the unique elirnent satisfying 
(ab) (ab)-l = (ab)-l (ab) = e. 

However, (ab) (b-I a-I) = ((ab) b-l) a-I 

= (a (b b-l) a-l) 

= (a e) a-I 



= aa-' 
= e  

Similarly, (b-I a-I) (ab) = e. 

Thus, by uniqueness of the inverse we get (ab)-I = b-1 a-1. 
Note that, for a group G, (ab)-I = a-' b-I' v a, b E G only i f  G is abelian. 

You know that whenever ba = ca or ab = ac for a, b, c in R*, 
we can conclude that b = C .  That is, we can cancel a. This fact is true for any group. 

Theorem 5 : For a, b, c in a group G,  

a) ab = ac + b = c. (This is known as the left cancellation law.) 

b) ba = ca + b = c. (This is known as the right cancellation law.) 

Proof : We will prove (a) and leave you to prove (b) (see E 7). 
(a) Let ab = ac. Multiplying both sides on the left hand side by a-I E G, we get 

a-I (ab) = a-' @) 
* (a-I a) b = (ad1 a)c 

eb = ec, e being the identity element. 
3 b = c .  

Remember that by multiplying we mean we are performing the operation *. 

f 
E 7) Prove (b) of Theorem 5. 

-- -- 

Now use Theorem 5 to solve the following exercise. 

E 8) If in a group G, there exists an element g such that gx = g for all x E G, then show 
that G = {e). 

We now prove another property of groups. 

Theorem 6 : For elements a. b in a group G, the equations ax = b and ya = b have unique 
solutions in G. 

Proof : We will f is t  show that these linear equations do have solulions in G, and then we. 
will show that the solutions are unique. 

For a, b E G ,  consider a-I b E G. We find that a(a-I b) = (aa -I)  b = eb = b. Thus, a-I b 
satisfies the equation ax = b, i.e., ax = b has a solution in G. 

But is this the only solution ? Suppose x,, x2 are two solutions of ax = b in G. Then 
ax, = b = axz. By the left cancellation law, we gel xl  = xz. Thus, a-1 b is the unique solution 
in G. 

Similarly, using the right cancellation law, we can show that ba-I is the unique solution of 
ya=b inG.  

Now we will illustrate the property given in Theorem 6.  

2 3 
m e  7 : o n s i e r  A = [ ] . B = [ ] in GL, (a) (see i x a m p i m .  

1 2  0 4 
Find the solution of AX = B. 

Solution : From Theorem 6, we know that X = A-I B. Now, 

Groups 

In the next exampkwe consider an important group. 
r 



E l c m e n l ~ r ~  Group Theory Example 8 : Let S be a non-empty set. Cpnsider p(S)  (see Example 2) with the binary 
operation of symmetric difference A, given by 
AAB=(A\B)U(B\A) V A , B E  p(S). 
Show that (@(S), A) is an abelian group. What is the unique solution for the equation 
Y A A = B ?  

Solr!Uon : A is an associative binary operation. This can be seen by using the facts that 

A\B=AflBC,(AnB)C=ACUBC,(AUB)C=ACflBc 
and that U and (7 are commutative and associative. A is also commutative since A A B 
=BAAYA,BE@(S) .  

Also, + is the identity element since A A f) = A '4 A E @(S). 

Further, any element is its own inverse, since A A A = + V A E @(S). 
Thus, (p(S). A) is an abalian group. 

For A, B in (p(S), A) we want to solve Y A A = B. But we know that A is its own 
inverse. So, by Theorem 6, Y = B A A-I = B A A is the unique solution. What we have also 
proved is that (B A A) A 4 = B for any A, B in p (S). 

Try the fbllowing exercise now. 

E 9) Consider Z with subtraction as a binary operation. Is (Z, -) a group 7 Can you 
obtain a solution for a-x = b 'd a, b E Z 7 

And now let us discuss repeated multiplication of an element by iwlf. 

Ikfinltion : Let G be a group. For a E G, we define 

i) ao= e. 

ii) an=abl.a,ifn>O 

iii) ad = if n > 0. 

n is called the e%ponent (or Index) of the integral Nwer an of a. 
Thus, by definition a1 = a, a2 = &a, a3 = a2.a, and so on. 

Notc : Whm the notation used fur the binary operation is Wition, an becomes na. For 
example, f a  any a E Z, 
na=Oifa=O, 
na=a+a+  ... +a(ntimes) i f n > b ,  

Let us ww pmve mpe laws of indi is  for group elements. 

: We pave (a) and 01, and leave the proof of (c) to you (see E 10). 

(a) If n = 0, c l d y  (an)-l = ad = (a-I).. 
Now suppose n > 0.' S h  aa-I = e, .we sse rhat 

I 

e=e"=(sa')" 

Aiso, (a-I)" = @, by definition. 
:. =(sr')r=9whenn>O. 
Ifn<O,then(d)>OBDd 

,(*I = [sc+"J-l 

= [(adF1rl, by the case n > 0 
=ad I 



Also, (a-ly = (a-lv*) 
= [(a-I)-'] ", by the csse n > 0 
= a*. 

So, in this case too, 
= a* = @-I)". 

(b) If m = 0 or n = 0, then am+" = am.an. Suppose rn # 0 and n # 0. 
We will consider 4 situations. 

Case 1 (m > 0 and n > 0) : We prove the proposition by induction on n. 
If n = 1, then am. a = awlr by definition. 
Now assume that am. awl = awW1 
Then, am. an = am(aW1. a) = (am . awl) a = amo-I. a = am+n. Thus, by the principle of 
induction, (a) holds for all m > 0 and n > 0. 

Case 2 (m < 0 and n < 0) : Then (a) > 0 and (-n) > 0. Thus, by Case 1, a-". 
- - = adwn). Taking inverses of both the sides and using (a), we get, 
awn = (aa. aq)-l = (a")-l = 

Case 3 (m > 0, n < 0 such that m + n 2 0) : Then, by Case 1, am+". a4= an'. Multiplying 
both sides on the right by an = (a*)-', we get am" = am. an. 

Case 4 ( m > 0, n < 0 such that m+n < 0): By Case 2, a-m . am+n = an. Multiplying both 
sides on the left by am = (a-"')-I, we get amn = am . an. 

The cases when m < 0 and n > 0 are similar to Cases 3 and 4. Hence, awn = am.an for all 
a €  Gandm,n€  Z. 

To finish the proof of this theorem, try E 10. 

E 10) Now you can prove (c) of Theorem'7. 

(Hint : Prove, by induction on n, for the case n > 0. Then prove for n < 0.) 

Groups 1 

- - - -- - - --  

We will now study three. important groups. 

2.5 THREE GROUPS 

In this section we shall look at three groups that we will use as examples very often 
throughout this course - the group of lategers modulo n, the symmetric group and the set 
of complex numbers. 

2.5.1 Integers Modulo n 

Consider the set of integers, Z, and n E N. Let us define the relation of congruence on Z 
by : a is congruent to b modulo n if n divides a-b. We write this as a I b (mod n). For 
example. 4 = 1 (mod 3), since 3 1 (4-1). 

Similarly, (-5) = 2(mod 7) and 30 = 0 (mod 6). 

= is an equivalence relation (see Sec.l.4.), and hence partitions Z into disjoint equivalence 
classes called congruence classes modulo n. We denote the class containing r by 7. 

Thus, ? = { m e  Z I  m=r(modn)) .  

So an integer m belongs to 7 ' for some r, 0 S r < n, iff n I (r-rh), i.e., iff r-m = kn, for some 
k E Z.. 

Now, if rn 2 n, then the division algorithm says that m = nq+r for some q, r E Z, 0 5 r < n. 
That is, m = r (mod n), for some r = 0, .,..., n-1. Therefore, all the congruence classes 
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Is this operation well defined? To check this, we have to see that if 3 = b and c = a in Z,, 
- - 

then a+b = c+d. 

Now, a = b (mod n) and c = d (mod n). Hence, there exist integers kl  and k2 such that a - b = 
k,n and c - d = k2 n. But then (a+c)-(b+d) = (a-b) + (c-d) = (k, + k2)n. 

Thus, + is a binary operation on Z, . 
For example, 3 + 2 = 8 in Z4 since 2 + 2 = 4 and 4 = O(mod 4). 

To understand addition in Z,, try the following exercise. 

E 1 I )  Fill up the following operation table for + on Zq. 

-- - - - 

Now, let us show that (%,, +) is a commutative group. 

addition is commutative in Z,. 

ii) a + ( % +  C ) =  + ( b  + c ) =  a + ( b  + C) 

- - - -  
= ( a + b ) + c  = ( a  + b ) + c  =(; + % ) + c  V a , b , c  E Z,,, 

i.e., addition is associative in Z,. 

iii) a + a = 5 = + a V a  E Z,, i.e., 3 is the identity for addition, 
- - - - - -  

iv) ~ o r ;  E Z, ,3  n - a ~  Z,.suchthata + n - a = n  = 0 = n - a  + a .  

Thus, every element i in Z, has an inverse with respect to addition. 

The properties (i) to (iv) show that (Z,, +) is an abelian group. 

Try the following exercise now. 

E 12) Describe the partition of Z determined by the relation 'congruenke modulo 5'. 

Actually we can also define multiplication on Z, by 5 . % = 3. Then, b = 5 - - -  - - -  
V a, b E Zn. Also, (Z -6 ) F = a (b c ) V a, b, c E: 2,. Thus, multiplication in Z, is a 
commutative and associative binary operation. 

Z, also has a multiplicative identity, namely, 7 . 
I 

But (Z,, .) is not a group. This is because every element of Z,, for example q, does not have 
a multiplicative inverse. 

But, suppose we consider the non-zero elements of Z, , that is, (z*,, .). Is this a group? For 
- - -  

example ~f = 11, 2, 3) is not a group because . is not even a binary operation on z:, since 
- 
2 . 2  = 5 E z*~. But (z* , .), is an abelian group for any prime p. 

40 P 



E 13) Show that (z; , .) is an abelian group. 
(Hint : Draw the operation table.) 

Let us now discuss the symmetric group. 

2.5.2 The Symmetric Group 

We will now discuss the symmetric group briefly. In Unit 7 we will discuss this group in 
more detail. 

Let X be a non-empty set. We have seen that the composition of functions defines a binary 
operation on the set F(X) of all functions from X to X. This binary operation is associative. 
Ix, the identity map, is the identity in S(X). 

Now consider the subset S(X) of B(X) given by 

S(X) = {f E F(X) I f is bijective}. 

So f E S(X) iff f-l: X + X exists. Remember that f o f" = f-Is o f = Ix. This also shows that 
f- '  E S(X). 

Now, for all f, g in S(X), 

(g 0 Q o (f-' 0 g-') = = (f" o g-') o (g o Q, i.e., g o f E s(x). 

Thus, o is a binary operation on S(X). 

Let us check that (S(X), o) is a group. 

i) o is associative since (fog) o h = f o (g o h) ,+ f, g, h E S(X). 

ii) Ix is the identity element because f o Ix = Ix o f ff f E S(X). 

iii) f-' is the inverse off ,  for any f E S(X). 

Thus,'(S(X), 0) is a kroup. It is called the symmetric group on X. 

If the set X is finite, say X = (1, 2, 3 ...... n), then we denote S(X) by S,, and each f E S, is 
called a permutation on n symbols. 

Suppose we want to construct an element f in S,. We can start by choosing f(1). Now, f(1) 
..... can be any one of the n symbols 1 ,2 ,  n. Having chosen f(l), we can choose f(2) from 

the set {l ,2 ........ n} \ {f(l)}, i.e., in (n-1) ways. This is because f is 1-1. Inductively, after 
choosing f(i), we can choose f(i+l) in (n-i) ways. Thus, f can be chosen in ( I  x 2 x .... x n) 
= n ! ways, iie., S, contains n! elements. 

For our convenience, we represent f E S, by 

For example. ( ) represents the function f : (1, 2. 3. 4) + { I .  2, 3. 4) : 
2 4 3 . 1  

f (1) = 2, f(2) = 4, f (3) = 3, f (4) = 1. The elements in the top row can be placed in any order 
as long as the order of the elements in the bottom row is changed accordingly. 

~ h u s ,  ( )also represents the same function f. 
4 2 3 1  

Try this exercise now. 

E 14) Consider S3, the set of all permutations on 3 symbols. This has 3! (= 6) elements. 

One is the identity function. I, Another is . Can you list the other 
( 2 . 1  3 )  

four? 
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f c S, fires an clmnent x if f(x) = 
X. 

Now, while solving E 14 one of the elements you must have obtained is f = 

Here f ( l )  = 2, f (2) = 3 and f (3) = 1. Such a permutation is called a cycle. In general we 
have the following definition. 

Definition : We say that f E S, is a cycle of length r if there are x,, ...., x, ill 

X = { 1, 2, ....., n) such that f(xi) = xi+, for I I i 5 r-1, f(x,) = xl  and f(t) = t for 
t # x'l. ..., x,. In this case f is written as ( X I  .... x,). 

For example, by f = (2 4 5 10) E Slo ,  we mean f (2) = 4, f (4) = 5, f (5) = 10, f (10) = 2 
and f G) = j for j # 2 , 4 , 5 ,  10. 

Note that, in the notation of a cycle, we don't mention the elements that are left fixed by the 
permutation. Similarly, the perm~ltation 

( : : )is  the cycle (I 2 5 3 4 ) in S5. 

Now let us see how we calculate the composition of two permutations. Consider the 
following example in S5. 

since I ,  3 and 4 are left fixed. 

The following exercises will give you some practice in computing the product of elements 
in S,. 
- - 

E 15) Calculate (1 3) o ( I  2) in S3. 

E 16) Write the Inverses of the following in S3 : 

a) (1 2 )  

b) (1 3 2) 

Show that l ( 1  2) o (1 3 2) I-' # (1  2)-I o (I 3 2)-I. (This shows that in 
Theorem 4(b) we can't write (ab)-I = a-' b-I.) 

And now let us talk of a group that you may be familiar with, without knowing that it  is a 
group. 

2.5.3 Complex Nu,m bers 

I n  this sub-section we will show that thc set of complcx numbers forms a group with 
respect to addition. Some of you may not be acquainted with some basic propertics or 
complex numbers. We have placed thcsc properties in the appendix to this unit. 

Consider the set C of all ordered pairs (x,  y) of real numbcrs. i.e.. wc t:rkc C = H x H. 
Define addition (+) and multiplication (.) in C as follows: 

(XI ,  Y I )  + ( ~ 2 . ~ 2 )  =(XI + ~ 2 ,  Y I  + y2) and 

( x I , Y , ) .  (x2*;2)=(x1 X 2 - Y ,  Y 2 1 X l  Y ~ + X ~ Y I )  

for ( x ~ . y ~ ) a n d  ( x ~ , y z ) i n C .  



This gives us an algebraic system (C, +, 
remember that two complex numbers (x,, 
Y I  =y2. 

.) called the system of complex numbers. We must Croups 

y I) and (x2, YZ) are equal iff X, = x2 and In Block 3 you will see that (C.+ , .) 
is also a ring nnd a field. 

You can verify that + and . are commutative and associative. 

Moreover, 

i) (0,O) is the additive identity. 

ii) for (x, y) in C, (-x, -y) is its additive inverse. 

iii) (1,O) is the multiplicative identity. 

iv) if (x, y) # (0, 0) in C, then either a2 > 0 or y2 > 0. 

Hence, x2 + y2 > 0. Then 

X is the multiplicative inverse of (x, y) in C. 

Thus, (C, +) is a group and (c*, . ) is a group. ( As usual, C* denotes the set of non-zero 
complex numbers.) 

Now let us see what we have covered in this unit. 
- 

2.6 SUMMARY 

In this unit we have 

1) discussed various types of binary operations. 

2) defined and given examples of groups. 

3) proved and used the cancellation laws and laws of indices for group elements. 

4) discussed the group of integers modulo n, the symmetric group and the group of 
complex numbers. 

We have also provided an appendix in which we list certain basic facts about complex 
numbers. 

E l )  a) x @ y  = y @ x V x , y e  R. 

Therefore, @ is commutatjve. 

(x @ y) @ z =.(x+y-5) @ z = (x+y-5)sz-5 
= x+y+z-10 
= x @ ( y a , z )  

Therefore, @ is associative. 

@ is not closed on N since 1 @ 1 @ N. 

b) * is commutative, not associative, closed on N. 

c) A is not commutative, associative or closed on N. 

E 2) a) The identity element with respect to Cl3 is 5. 

Suppose e is the identity element for *. 43 
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Then x * e = x * 2 (x + e) = x + e = - -, which depends on x. Therefore, 2 
there is no fixed element e in R for which x * e = e * x = x tf x E R. Therefore, 
s has no identity element. 

Similarly, A has no identity element. 

b) The inverse of x with respect to @ is 10-x. Since there is no identity .for the 
other operations, there is no question of obtaining x-I. 

So, the table is 

E 4) Check Lhat both of them satisfy GI, G2 and G3. 

E 5) (a) and (d) are true. 

(b) R* is an infinite abelian group. 

(c) (Z*, .) satisfies G1 and G2, but not G3. No integer, apart from +I,  has a 
multiplicative inverse. 

E 6)  ((a&) * (c,d)) * (e, E) 
= (ac, bc+d) *(e, f )  

= (ace, (bc+d)e + f) 
= (a, b) *( (c, d) * (e, f ) )  

Thus, * satisfies Gl'. 
(a, b) * (1, 0) = (a, b) V (a, b) E G. 

Therefore, G3' holds. 

Therefore, (G,k) is a group. 

E 8) Let x E G. Then gx = g = ge. So, by Theorem 5, x = e. 

:. G = {e). 

E 9) (Z, -) is not a group since G1 is not satisfied. 
For any a, b E 2, a - (a - b) = b. So, a - x 5 b has a solution for any a, b E Z. 

E 10) When n = 0, the statement is clearly true. 

Now, let n > 0. We will apply induction on n. For n = 1, the statement is true. 
Now, assume that it is true for n-1, that is, (am)"' = 

Then, (am)" = + = (am)"'. am, by (b) 
- - p(n-1).  am 

= am(n-l+'), by (b) I 

= amn. 
I 

So, ( c )  is nue n > 0 and Y rn E Z. 
8 

44 Now, let n < 0. Then (-n) > 0. 

d 1  



:. (am)" = [(am)-"]-', by (a) 
= [ am(-")]-l, by the case n > 0 
= [a-ml-l 

= am", by (a). 

Thus, 4d. m, n E Z, (c) holds. 

E 12) Z is the disjoint union of the following 5 equivalence classes. 

E 13) The operation table for.  on Z; is 

4 

3 i 1 

It shows that. is an associative and commutative binary operation on 2:. i I, .  the 

multiplicative identity and every element has an inverse. 

Thus, (z:, .) is an abelian group. 



Elementary Group Theory 2 3 1 . E 16) a) Letf =(1 2 ) =  ( 3 ) . . f 1 = (  : ) ,  
just interchanging the rows. 

:. f -' = (1 2). 

b) (1 3 2 ) - '= (2  3 1). 

Now, (1 2) o ( I  3 2) = (i i :) 
2 

~ t s  inverse is (: ) = (1 3). 

On the other hand, 

(1 2)-1 0 (1 3 2)-' = (1 2) 0 (1 2 3) = (2 3) # (1 3). 

APPENDIX : COMPLEX NUMBERS 

Any complex number can be denoted by an ordered pair of real numbers (x, y). In fact, the 
set of complex numbers is 

C = ( (x. y) I x, Y E R 1. 

Another way of representing (x, y) E C is x + iy, where i = fi. 
We call x the real part and y the imaginary part of x + iy. 

The two representations agree if we denote (x, 0) by x and (0, 1) by i . On doing so we can 
,write 

x + iy = (x, 0) + (0, 1) (v, 0) 

= (x, 0) + (01 Y) 
= (x, Y), 

andi2 = (0, 1) (0,.1) = (-1,O) =-I. 

While working with complex numbers, we will sometimes use the notation x+iy, and 
sometimes the fact that the elements of C can be represented by points in R2. 
You can see that 

(X1 + i ~ l )  + ( ~ 2  + i ~ 2 )  = ( ~ l r  YI) + ( X Z ~  YZ) 
= (x1+ X27 Y1 f ~ 2 )  
= (XI + ~ 2 )  + i (yl + ~21, and 

' 

. (XI + i ~ l )  ( ~ 2  + iy2) = ( ~ 1 ,  YI) ( ~ 2 ,  ~ 2 )  
= (XI X7-YlY2r XIYZ+XZYI) 
= ( x l x z - ~ l ~ 2 )  + i (x1y2+ ~ 2 ~ 1 ) .  

Now, given a complex number, we will define its conjugate. 

Definition : For a complex number z = x + iy, the complex number x + i (-y) is called 
the conjugate of z. It is also written as x - iy and is denoted by Z . 
For z = x + iy, we list the following properties. 

i) z + 5 is a real number. In fact, z + 5 =.2 x. 

ii) z . i = xZ + y2, a non-negative real number. 
- - 

iii) zl T z2 = zl + Zz , for any zl, z2 E C. This is because 



Let us now see another way of representing complex numbers. Groups 

Geometric Representation of Complex Numbers .f 
We have seen that a complex numberz = x + iy is represented by the point (x, y) in the 
plane. If 0 is the point (0,O) and P is (x, y) (see Fig.3), then we know that the distance 

P (x7 Y) 

OP = w. This is called the modulus (or the absolute value) of the complex 

number z and is denoted by I z 1 .  Note that -= 0 iff x = 0 and y = 0. 

Now, let us denote) z I by r and the angle made by OP with the positive x-axis by 8. Then x X 
8 is called an argument of the non-zero complex number z. If 0 is an argument of z, then 
8 + 2nn is also an argument of z for all n E Z. However, there is a unique value of these Fig. : 
arguments which lies in the interval [-n, nl. It is called the principal argument of x+iy, representation o f  x + iy  
and is denoted by Arg (X + iy). 

From Fig.3 you can see that x = r cos0, y = r sine. That is, 
z = (rcose, rsin0) = r(cose+i sine) = reie. 

This is called the polar form of the complex number (x+iy). 
i9, it3 

Now, if zl = rle and z2 = r2e 2, then 
i(O +€J ) 

2, %=r, r2e . 
Thus, an argument of zl 22 = an argument of zl + an argument of z2. 

We can similarly show that if z2 t 0, 

an argument of Et = an argument of zl - an argument of z,; 
22 

In particular, if 8 is an argument of z (# 0), then (-8) is an argument of z-I. 

We end by stating one of the important theorems that deals with complex numbers. 

De Moivre's Theorem : If z = r ( c o d  + i sine) and n E N, then 
zn = rn (COS n0 + i sin no). 




