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10.1 INTRODUCTION

We have seenin Unit 3 of Block 1 that one of the problems which motivated the concept
of a derivative was a geometrical one — that of finding a tangent to a curve at a point.
The concept of integration was also similarly motivated by a geometrical problem —
that of finding the areas of plane regions enclosed by curves. Some recently discovered
Egyptian manuscripts reveal that the formulas for finding the areas of trianges and
rectangles were known even in 1800 B.C. Using these one could also find the area of
any figure bounded by straight line segments. But no method for fmdmg the area of
figures bounded by curves had evolved till much later.

In the third century B.C. Archimedes was successful in rigorously proving the formula
for the area of a circle. His solution contained the seeds of the present day integral
calculus. But it was only later, in the seventeenth century, that Newton and Leibniz
were able to generalise Archimedes’ method and also to establish the link between
differential and integral calculus. The definition of the definite integral of a function,
which we shall give in this unit was first given by Riemann in 1854, In Unit 11, we will
acquaint you with various methods of integration.

You have probably studied integration before. But in this unit we shall adopt a new
approach towards integration. When you have finished the unit, you should be able to
tie in our treatment with your previous knowledge.

Objectives

_ After reading this unit you should be able to '

e define and calculate the lower.and upper sums of some simple functions defmed on
[a,b], corresponding to a partition of [a,b],

¢ define the upper and lower integrals of a function,

e define the definite integral of a given function and check whether a given function is
integrable or not, '

e state and prove the Fundamental Theorem of Calculus,

® use the Fundamental Theorem to calculate the definite integral of an integrable
function.

'10.2 PRELIMINARIES

We have mentioned in the introduction that Archimedes was able to find the formula
for the area of a circle. For this he approximated a circle by an inscribed regular
polygon (See Fig. 1 (a)).

Further, we can see from Fig. 1(b) that this approximation becomes better and better
as we increase the number of sides of the polygon. Archimedes also tried to
-approximate the area of the circle by a number of circumscribed polygons as in

Fig. 1(c). The area of the circle was thus compressed between the inscribed and the
circumscribed polygons.
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_ We shall follow a similar procedure for finding the area of the shaded region shown
=1 in Fig. 2. We begin with the concept of a partition.

10.2.1 Partition of a Closed Interval
Let us consider the closed interval [a,b] € R. Then we have the followmg definition

X Definition 1 Let Xy, X, X5,....,X,;, X, be numbers in [a,b] such that

d—— a=%<x<x<.. <xn_,<x—b
Then the ordered set P = {X0 X [:X20en0 X} 1S called a partltlon of [d b].
* Example 1 P, = {0,.1/4, 1/2, 3/4, 1} and Pz = {0,1/3, 1/2,2/3, 6/7, 1}, both are
partitions of [0,1].
Fig. 2 Moreover,

Byan ordered set we meanaset.in' Py UP, = {0, 1/4, 1/3,1/2,2/3, 3/4,6/7, 1} and P, NP, = {0, 1/2,1} arealso

which, the order in which its ele- 3 (s d
ments occur is fixed. partitions of {0,1]. See Fig. 3 (a), (b). (c) and (d).

' N P A -4 . F_',__'.__'—.'—H—' — !
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° 3 2 4 32 37 © 2
() (b) Fig. 3 ‘ . (@)
A setJ iscalled a sub-intervalof an A partition P = {Xy,X{,X3,..-.... xn} of [a,b] divides [a,b] into n closed sub-intervals,
interval I, if
i) Jis aninterval, and Ixoxi)s Ixi.x0]se '[xn—l-_ Xnls
iWICI - withthe n+ 1 partitioning points as end-points. The iriterval [x;_(, x;] is calicd the ith
sub-interval of the partmon The length of the ith sub-interval, denoted by Ax;, is
defined by ,
‘A’ is read as delta. AX; = x; — Xy

It follows that

iAxi = i ();\;—x;-,)=x,,—x(,=b—‘a.

We call partition P regular if every sub-interval has the same length, that is, if x; — X,
%y = X| ,...., X, — X,y are all equal. In this case, the length of fa,b], thatisb—a,is
equally d1v1ded inton parts, and we get

-~

X1=Xo=Xp=X| = ... =X~ Xn.| = bn a,
Thus, a regular partition of [a,b] may be written as

\ {a, a+h, a+2h, ... , a+ nh}, where a + nh = b; We shall denote this partition by
{a+ lh}l_o ‘

ForP = {1., 3/2., 2, 5/2, 3, 7/2, 4}, Ax, =X17Xp= 3/2 — 1= 1/2, AXZ =X X1 =
2 —3/2=1/2. Ifyou calculate Axs, Ax,, Axsand Ax,, youwillsee that Pisaregular
partition of [1,4].




E E!) See Example 1. Which partitionsamong Py, P,,P;UP, and P, NP,are regular?
What are the lengths of the third sub-intervals in P, and in P,?

E E2) Write down a regular partition for each ot the following intervals.

a) [0, 2] with 7 partitioning points.
b) [2, 9] with 11 partitioning points.

Definition 2 Given two partitions P, and P, of [a,b], we say that P, is a refinement of P,
(or P, is finer than P,) if P, D P.

In other words, P, is a refinement of P, if each sub-interval of P, is contained in some
sub-interval of P .

Example 2 Consider the partitions

P, ={1,5/4,3/2,7/4, 2},

P, ={1, 6/5, 5/4, 3/2, 19/10, 2},

P, ={1,5/4,3/2, 2}

P, and P, are both finer than P;, as P, > P; and P, > P;. However, neither is

P, a refinement of P, nor is P, a refinement of P;.

If P, and P, are partitions of [a,b], then from Definition 2 it follows that

i) Py UP, is arefinement of both P, and P,.

ii) P, and P, are both finer than P, N P,.

Now, suppose for every n € N we define P, as

P.={a+i bz—“a 2

Thismeans P, has 2"+ 1 elements. We cansee that P, is a regular partition, with each
b—a

sub-interval having length =

b-a _ 1 [ b-a
Now, St 5 ( 5 )

This means that the length of the sub-intervals correspondingto P, ishalf the length
of those correspondingto P,. Wecanalsosee that P,,,,>P,. Inotherwords, P,
is finer than P, (also see E3)). Thus, we have defined a sequence of partitions {P,} of

a,b],suchthat P,., isarefinementof P, foralln.Suchasequence {P,} iscalleda
q
sequence of refinements of partitions of [a,b].
E E3) From the sequence of partitions {P,} defined above,
{a a+b b}

a) Find P, and Pi.

b) Verify that P; oP, > P;.

c) What are the lengths of the sub-intervals in each of these partitions?

AX =X, -x,,

Definite Integral

—a+1———[a+(n—]) ;‘-‘f
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We have defined l.u.b. (sup-
remum) and g.l.b. (infimum) of a
bounded set of real numbers in
Unit-1.

_Let f: [a,b] — R be a bounded function, and let

L) = my (X~ X)) + mp(— %) + .o+ My (Xy — Xay).

G.F.B. Riemann (1826-1866)

' | L(P,f) is obtained by summing the products obtained by multiplying the infimum in

E4) Let {P,,}:”1 bea sequence of partitions of [a,b], and let P: = Fl,

P5=P,UP,, Pi=P,UP,U P;, andin general, Py =P,UPy,. Show that
{P7}"_, is a sequence of refinements of [a,b].

10.2.2 Upper and Lower Product Sums

By now, we suppose you are quite familiar with partitions. Here we shall introduce
the concept of product sums. It is through this that we shall be in a position to
probe the more subtle concept of a definite integral in the next section.

P = {Xo, X1, X3,....,X5} be a partition of [a,b].

Now for any sub-interval [x;_;, X;], consider the setS; = {f(x):xe€ [Xin xi]}.
Since f is a bounded function, S; ‘mustbe aboundedsubsetof R. This means,
it has a supremum (or least upper bound) and infimum (or greatest lower bound).
We write -

M, = sup 8; = sup {f(x) : x€[xy,x]},and .

m; = inf §; = inf {f(x) : x € [x.q, X]}.

We now definre the upper product sum U (P,f) and the lower product sum L(P,f) by

n

U(P,f) = i MiAxi; L(P,f)= 2 miA*i T e, (1)
i=1

i=1
You must have come across this 2. .notation earlier. But let us state clearly what (1)
means : '

UPf) = M, (x; —x) + Mp(x; —x;) +.... + M, (x, — X,), and

Thus, to get U(P,f) we have multiplied the supremum in each sub-interval by the
length of that sub-interval, and have taken the sum of all such products. Similarly,

each sub-interval by the length of that sub-interval. U(P,f) and L(P,f) are also called
Riemann sums after the mathematician George Friedrich Bernhard Riemann.
Riemann gave a definition of definite "integral that, to this day, remains thé most convenieni
and useful one.

‘We started- this unit saying that we wanted to find the area of the shaded region in
Fig. 2. Then what are we doing with partitions, U(P,f) and L(P.f)? Fig. 4 will give
you a clue to the path which we are going to follow to achieve our aim.

YA v [ ’ ¥ 1;

@ ) ©
' Fig. 4




Fig. 4(a) and 4(b) give the geometricview of M;Ax; and m;Ax; as areas of rectangles Definite Integral
with base Ax; and heights M; and m;, respectively.

The shaded rectangles in Fig. 4(a) are termed as outer rectangles, while the shaded
rectangles in Fig. 4(b) are called inner rectangles. ‘

Thus, when f is a non-negative valued function (f(x) = 0¥ x),

U(P,f) = sum of the areas of outer rectangles as in Fig. 4(a).

L(P,f) = sum of the areas of inner rectangles as in Fig. 4(b), and

U(P.f) — L(Pf) = sum of the areas of the shaded rectangles along the graph of
% f in Fig. 4(c). .

) As you see from Fig. 5, U(P,f) and L(P,f) depend upon the function

k f:fa,b] — R (compare Fig. 5(a) and (b)), and the partition P of [a,b] (compare
'Fig. 5(c) and (d)).

v} v

- |
P
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> - >
X Of1121 32 2533 ) ¢
(d)
mig. 5 (a) U(P,f) where y = x (b) U(P,f) where y* = x

“(c) UPfHywhenP={0,1,2,3} (d) U(P.f) whenP = {0, 1/2, 1, 312, 2, 5/2, 3}

If we denote the area between the curve given by y = f(x), the x-axis, and the
lines x = a and x = b, (the shaded area in Fig. 2) by A, then it is also quite
clear from Fig. 4(a) and (b), that L(P,f) < A < U(P,f).

The geometric view suggests the following theorem:

Theorem 1 Let f:[a,b] — R be a bounded function, and let P be a partition of
[a,b]. If M and m are the supremum and the infimum of f, respectively, in [a,b],

then
m(b—a) < L(P,f) = U(P,f) = M(b—a). If X CY, then
Proof: Now M = Sup {f(x) : x € [a,b]}, and ::fp,? : m"fq;y and

M — et [f(v) - v € [v ' vl TWoarnre MM « AN ~
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Further, m = inf {f(x) : x € [a,b]}, and

m; = inf {f(x) : x € [x;, , x;J}. Thus, m < m;. This means
m=m=M=M . 3]
Once we have the inequalities (2), we can complete our proof in easy steps. (2)
implies that

mAx = mAx, = M; Ax;, = M Ax;

This implies that if we take the sum over i=1, 2,.....,n, we get

m3> Ax; s L(Pf) = UPH = M 2 Ax
i=1

i=]

= m(b-ay = L(P,f) = UPS) = M(b-a),

X

n
' since 2 Ax; = the sum of the lengths of all sub-intervals

the length of [a,b]

= b—a. |
Fig. 6 will help you understand this theorem better Let us verify this theorem in
the case of a given function.

Example 3 Let :[1,2] — R be a function defined by f(x) = x°. and let

P = (1, 5/4,3/2, 5/3, 2} be a partition of [1,2]..The sub-intervals associated with
Pare (1, 5/4], [5/4, 312], [3/2, 5/3] and [5/3, 2].

The function f is a bounded function on [1,2]. In fact. the image set of f is
[1,4], which is obviously bounded.

Fg.7

Since f is an increasing function on each sub-interval (see Fig. 7) the supremum
of f in [x;, x;] will be attained at x; and the infimum will be attained at x;_,.
- That is,
M; = f(x;) and
m, = f(x,4). Therefore, we can write
UPH = M Ax, = 3 f(x) Ax = I x (%—Xi4)
2 (%) + Ble—x) + Bs—%) + 1§ (K—x5)

B @) B E) ) o)

25 9 25 . .4
64+16+54+3

4751

P——

W

U(P.H




L(P,f) = Emi AX' = Ef(xi_l) AXi.

_ 1, 25 9 25
s Y Yttt
_ 3652
1728

Now, the supremum of f(x) in [1,2] = M = f(2) = 2*> = 4, and

the infimum = m = f(1) = 1. Thus,

M(b-a) = (4) 2-1) =4, and m(b—a) = (1) 2-1) = 1. Thus,

m(b—a) = L{P,f) = UPSf) = M(b-a).

We have noted that the upper and lower product sums depend on the partitio’n'of

the given interval. Here we have a theorem which gives us a relation between the
lower and upper sums corresponding to two partitions of an interval.

Theorem 2 Let f:[a,b] — R be a bounded function, and let P; and P, be
partitioris of [a,b]. If P, is finer than P,, then
L(P,,f) = L(P.,f) = U(P,f) = U(P.f).
Proof: For proving this theorem we look at Fig. 8(a) and (b).
Let P; = {x9, X1, X3,....,Xo} and P; = {Xo, v, X{,X;,.....,X,} be two partitions of
[a,b]. P, contains one element more than P, namely, vy

. Therefore, P, is finer than P;. '
In fact, P, can be rightly called a simple refinement of P,. We shall prove the
theorem for this simple refinement here.

P; divides. [a,b] into n sub-intervals :

[XO’ xl]’ [xb x2]) ----- ’[xn—l, xn]-

s | vA

| 8

o Xy Vi X X, X o X V1% X

@) ' )

Fig. 8

Fig. 8(a) clearly shows that L(P,,f) = L(P,,f) (by an amount represented by the
area of the shaded rectangle). -

Similarly, Fig 8(b) shows that” U(P,,f) = U(Py,f).

Since L(P;,f) = U(P,,f), the conclusion of the theorem follows in this case.

Now if P, is not a simple refinement of P;, then suppose P, has m elements

more than P;. Then we can find (m—1) partitions Pl, P P, ... .., P!
such that

N ) . -« » .
P,cPlcPcPlc..... < Py! P, and each partition in this sequence is a

simple refinement of the previous one.

Deflaite Intégral

1
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Theorem 2 then holds for each pair of successive refinements, and we get
L(P,,f) = L(PLH =< L(PLH) = ... = L(PF'f) = L(P,f) and

TUP,f) = UPTLD) = ... = U(P3) = UPLI) =UP,f)

Thus, L(P,f) = L(P,f) = U(P,f) = U(P,.f).

From Theorem 2 we conclude the following :

Let f:]a,p] — R be a continuous and non-negative valued.function, and let
{Pn}‘:=1 be a sequence of refinements of [a,b].

Then we have

L(P,f) < L(Pyf) =....... < LP,H) ... A s..u.5s UP,MH =.....<
U(P,,f) = U(P,,f), where A is the area bounded by the curve, the x-axis and the
lines x = a and x = b. !

E ES) Find the upper product sum and the lower product sum of the function f

relative to the partition P, when
a)f(x) = 1+x% P = {0,1/2,1,32,2
b) f(x) 1x, P = {1,2,3, 4}

E E5 Verify Theorem 2 for the function f(x) = 1/x, 2 <x =3, and the partitions

P, = {2, 52,3} and P, = {2, 94, 52, 11/4, 3} of [2,3].




In this sub-section we have seen that the area A in Fig. 2 can be approximated by
means of the lower and upper sums corresponding to some partition of [a,b].
Further, Theorem 2 tells us that as we go on refining our partition, the lower and
upper sums approach A from both sides. The lower sums underestimate

A (L(P,f) = A), while the upper sums overestimate A (U(P,f) = A). Letusgoa
step further in the next sub-section, and define lower and upper integrals.

10.2.3 Upper and Lower Integrals

Let f:fa,b] —» R be a non-negative bounded function. Then to each partition P

of [a,b], there correspond the upper product sum U(P,f) and the lower product
sum L(Pf).

Let P be the set of all partitions of [a,b]. Then the set u = {U(P,() : P € P}
is a subset of R and is bounded below since A =< U(P,f) ¥ P € P.. Thus, it is
possible to find the infimum of wu.

Similarly, the set u’ = {L(P,f) : P € P} is bounded above, since L(P,f) < A Pe€P.
Hence we can find the supremum of u’. The infimum of u and the supremum of
‘w’ are given special names as you will see from this definition.

Definition 3 If a function f is defined on [a,b] and if P denotes the set of all
partitions of [a,b], then infimum of {U(P,f) : P € P} is called the upper integral of f

b
on [a,b], and is denoted by f f(x) dx.
a

The supremu‘m of {L(P.f):P € P} is called the lower integral of f on [a,b], andis
denoted by j: f(x) dx.

Tb
From Theorem 2 it follows that J f(x) dx = A and [ fx)dx = A.

b »
Thus we have f fx)dx = A < f f(x) dx.

a
- a

- 1
‘1
Example 4 Let us find £ f(x) dx and J;) f(x) dx.

L 0 if x is rational
for the function f, defined by f(x) =[ .
1 if x is irrational.
Suppose P= {xq, X;, Xj,.....,Xp} is a partition of [0,1].
Each sub-interval [x;_;, x;] contains both rational and irrational numbers. This
means, M; =1 and m; = 0 for each i.
Thus,

.
n

SO @-x)=1-0=1.

i=1

UP.H = 3 M; Ax;
i=1
and

L(P,f) = i hi Ax
i=1

n

2 0 (xi—xi1) = 0.

i=1

Since P was any arbitrary partition of [0,1], this means that
UPSf) =1 and L(Pf) = 0V PeP
_Thus, v = {UP,S) :Pe P} = {1}
and u = {L(Pf): Pe P} = {0}
Hence inf u = 1 and sup ' = 0. That is,

T1
Jf{x) dx = 1 and f} f(x)dx = 0.
0 EA

See if you can do these exercises now.

Definite Integral

Recall(Unit 1) that every set which
is bounded below has an infimum,
and every set which is bounded
above has a supremum.

The symbol ¢ [*is read as integral.
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E E7) Find Lf(x) dx andfo f(x) dx, for the function f defined as
f(x) = 2. .

E E8) If the functions f and g are bounded non-negative valued functions in [a.b]

b b
and if f(x) = g(x) in [a,b], prove that ff(x)dx Sf g(x)dx and
a a

fhf(x) dx = Ihg(x) dx.

i a

10.3 DEFINITE INTEGRAL

In the last section we had restricted our discussion to non-negative valued functions.
But we can easily extend our definitions of L(P.f), U(P,f) and the lower and upper
integrals to all bounded functions, However, we shall have to modify our

internretation of these sums as areas. For this numose. we introduce the concent




o

of signed area. If R is any region, its signed area is defined to be the area of its Definite Integral
portion lying above the x-axis, minus the area of its portion lying below the x-axis-

see Fig. 9).
(see Fig. 9) Y?

Fig. 9

With this definition then, we can interpret L(P,f) as the signed area of a polygon

inscribed inside the given region, and U(P,f) as the signed area of a polygon

circumscribed about the region. Thus, for any bounded function on a closed interval
' b

Ja

[a,b], we can define f f(x) dx = sup {L(P.f) : P € P}, and

fhf(x) dx = inf {U(P,S): P-€ P}’

a

Now we are in a position to discuss the definite integral for a bounded function on
a closed interval. (The adjective ‘definite’ anticipates the study of indefinite integral
later).

Definition 4 Let f:[a,b] — R be a bounded function. { is said to be integrable
over [a,b] if, and only if,

Ij f(x) dx = jbf(x) dx.

This common value is called the definite integral of f over the interval of
b

integration [a,b], and is denoted by J' f(x) dx.

In this notation for the definite integral, f(x) is called the integrand, a is called
the lower limit and b is called the upper limit of integration.

The symbol dx following f(x) indicates the independent variable. Here x is merely
a dummy variable, and we may replace it by t or v, or any other letter. This
means, ‘

b b

b
jf(x) dx = ff(t) dt = jf(v) dv.

i) i
The symbol j reminds us of S which is appropriate, because a definite integral is,

in some sense, the limit of a sum. In fact it is the common value (when it exists)
of the lower and upper integrals which are themselves infimum and supremum sums.

The use of f(x) dx reminds us that we do not take the sum of function values,
rather we take the sum of terms, each of which is the product of the supremum or
infimum of the function in an interval multiplied by the length of the sub-interval.

The definition of definite integral above, applies only if a < b, but it would be
appropriate to include the cases a =b and a > b as well. In such cases we define
a

ff(x) dx = 0

a

b a
andJ'f(x) dx = '—j f(x) dx
a b

provided the right hand integral exists. 15




Integral Cateutus In Example 4, we have seen that if

f(x) = {

0 if x is rational
1 if x is irrational, then

fo f(x) dx = 0, and ff(x) dx = 1.

Since the lower and upper integrals for this function are not equal, we conclude
that it is not integrable.

E E9) Check whether the function given in E7) is integrable or not.

Y ﬂ‘ : Now we shall list. some basic properties of definite integrals.

I  Integral of a constant function f(x) = c
b
j cdx = c(b—a) .
a
This is intuitively obvious since the area represented by the integral is

simply a rectangle with base b—a and height €, (see Fig. '10.).

‘Now let us consider a function f which is integrable over [a, b].
Fig. 10 - I1  Constant Multiple Property
b

o
[ kfxyax = k[ x) ax.

a

III Tinterval Union Property
b

c b .
If a<c<b, then ff(x) dx = ff(x) dx + ft(x) dx

a

Its geometrical interpretation is shown in Fig. 11(a).

v} v}
d |
C
X 0] X
® ®)

Fig. 11

IV Comparjson Property \
If c-and d are constants such that ¢ < f(x) = d for all xin [a,b], then

b
o(b—a) < f f(x) dx = d(b—a)

16




Fig. 11(b) makes this statement clearer. Note that ¢ and d are not necessarily the Definite Integral
minimum and maximum values of f(x) on [a,b]. ¢ may be less than the minimum, = ‘

and d may be greater than the maximum.

The following thearem given a criterion for a function to be integrable.

Theorem 3 A bounded function f is integrable over [a,b] ‘if and only if, for every
€ > 0, there exists a partition P of [a,b] such that 0 < U(P,f) — L(P,f) <.

Proof : We know that for any partition P of [a,b],

L(Pf) = f f(x) dx = fbf(x) dx = ‘U I -4
b M - - Oernntey
=0 = f f(x) dx — f f(x)-dx = U(P,f) — L(P,f). LD r’ ue.n

If the function f has the property that for every ¢ > 0 there exists a partmon
P of [a,b] such that

U(P.f) — L(P,f) < &, we conclude that

f f(x) dx - L f(x) dx < & for every ¢ > 0.

a

From this it follows that J f(x) dx — r f(x) dx = 0 and hence f is integrable over
[a.b].
On the other hand, if f is integrable over [a,b],

b .
f“f(x) dx = sup {L(P,f) : P € P} = inf {U(P.f) : P € P}. Thus, for every & >0

we can find partitions P’ and P” of [a,b], such that

b .
0= f f(x) dx = L(P',f) <¢e/2, and 0 = U(P".f) — f f (x) dx < &/2 (see Sec. 2 of
a a .

Unit 1).

Taking some partition P which is finer than both P’ and P”, and adding the two
inequalities, we have

0 = U(P.f) — L(P,f) < &.

This completes the proof.

Now arises a natural question : Which are the functions which satisfy the above
“criterion? The following theorems provide an answer.

Theorem 4 A function that is monotonic (increasing or decreasing) on [a,b],
is integrable over [a,b].

Proof Let the function f:[a,b] — R be increasing. Then

Xy < x2. = f(xl) = f(xz).

For each-positive integer n, let P, ={a,a+h,...., a+nh = b}, where h= b-a » be'a
regular partition of [a,b]. Then "

U(P,.f) = }n‘lM,-Axi = iMih = hani =
i=1 - i=1 i=1

since the supremum of f(x) in [a+(i—1) h, a+ih] is f(a+ih).

and L(P,f) = hzm = b;a if(a-l-(i—l)h)
AL =Y 17
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€

b-a £

. Yes, we can. Try some n >

<
n f(b)—f(a)

Therefore
U(Py,f) — L(Pyf)

=8 [f(a+h) + Ha+2h) + ... + f(a+nh)
~f(a) — f(a+h) ... f(a+(n—1)h)]
=2 [f(a+nh) — £(a)]

2= [¢(b) - £(a)].

Let ¢ > 0. Can we choose an n which will make U(P,,f) — L(P,,f) < ¢ ?

(b—a) [f(b) — f(a)]
€

. If we substitute this value of -n
in [1], we get
- e (b—a) [f(b) — f(a)]
U(P,, L(P,,
ED = LD < =3 T800) = )]

Thus, applying Theorem 3, we can conclude that f is integrable.

Theorem 4 leads us to the following useful result.
Corollary 1 If f is increasing or decreasing on [a,b], then
b : . o

f f(x) dx =‘hli[(l)] h[f(a) + f(a+h) + .... + f(a+(n—1)h)]

a

= lim h[f(a+h) + f (a+2h) + ..... + f(a+nh)], where h = b;a s
h—0 : ‘

We shall illustrate the usefulness of Corollary 1 through some examples. But before
that we state another theorem, which identifies one more class of integrable
functions. _

Theorem 5 If a function f:[a,b] — R is continuous, then f is integrable.

.The proof of this theorem is beyond the scope of this course. We shall prove it in
a later course on real analysis. , _
In Sec. 5 in Unit 3, we have seen that differentiability implies continuity. Now we
can write '
differentiability = continuity = integrability
Now, let us evaluate some definite integrals with: the help of Corollary 1.

b .

Example § To evaluate fcosx dx, 0 <a=b = w2, we observe that

a

f : x — cosx is a decreasing function on [a,b]. Therefore, by Corollary 1

b o ‘
' fcosx dx = lim h[cos(a+h) + cos(a+2h) + .... + cos(a+nh)], a+nh = b.

a e

Now _

2 sin (h/2) [cos(a+h) + cos(a+2h) + ... + cos(a+nh)] |

= 2sin (h/2) cos(a+h) + 2sin (h/2) cos (a+2h) + ..... + 2sin (h/2) cos (a+nh).
= [sin (a+—32L) — sin(a + %)] .+ [sin(a+ %) — sin (a+ —32h—)] + ... +

[§in (a+( 2n2+1 ) h) — sin (a+( 2n2—l ) h)]
= sin (a-+( "2“;1 )h) — sin (a+%)

= sin (b+%) —sin(a + 2L), since a + hh =b

sin (b+h/2) — sin (a+h/2)

=> cos(a+h) + cos(a+2h) + .... + cos(a+nh) =

2 sin h/2
Thus,
b h h h/2
e i inb+ By hooy o b
_[cosx dx LI—T) [sin ( 5 ) —sin(a + 5 )] sin (h/2)

= sinb -sin a.
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Example 6 Suppose we want to evaluate j (x+x?) dx
1

Here, f:x — x + X° is an increasing function on [1,2].

Therefore,
2

j}w#yu=mnhiﬂ1+m)h=1m
1 / h—0 =1 : ’
=lim h Yy [(1+ih) + (1+ih)’]
- - h—0 i=1 ‘

' n
=mn2@+m+ﬁﬂ
=0 iy

= lim [2h é1+3h2ii+h3ziz]
h—0 i=1 - i=1 i=1

= lim [2nh +- h’n(n+1) + = h *n(n+1) 2n+1)]
h—0

=an+%ﬂ+m+%(Hhﬂ%hnﬂmem=l.
h—0

2434 1_ D
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In this section we have noted that a continuous function is integrable. We have also
proved that a monotone function is integrable. Corollary 1 gives us a method of
finding the integral of a monotone function. One condition which is very essential
for the integrability of a function in an interval, is its boundness in that interval. If
a function is unbounded, it cannot be integrable. In fact, if a function is not
bounded, we cannot talk of M; or m;, and thus cannot form the upper or lower
product sums. Now on the basis of the criteria discussed in this section you should

‘ be able to solve this exercise.

E E10) State whether or not each of the following functlons is integrable in the given

interval. Give reasons for each answer.
a) f(x) = x? — 2x + 2 in [—1,5]

b) f(x) =V x in [1,a]

) f(x) = V/xin [-1,1]

d) f(x) = [x] in [0,4]

e) f(x) = [x—1]| in [0,3]

f) ) =L in[~4.0]

+1whenx <0 .
g) f(x) = [’1( in [-1,1]

— xwhen x =0,

X + 1 whenx <1

mmp[ in [0,3]

2x + 1 whenx = 1,

Definite Integrat

Recall that

éﬁn

«. n(t1)
=TT

n(n+1)(2n+1)

n.2
2=
2 6
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E E Izjse Corollary 1 to evaluate the following definite integfal.

"([(1+x) dx

10.4 FUNDAMENTAL THEOREM OF CALCULUS

As you have already read in the introduction, the basic concepts of definite
integral were used by the ancient Greeks, mainly Archimedes (287-212 B.C.), iore
than 2000 years ago. This was long before calculus was invented. But in the
seventeenth century Newton and Leibniz developed a procedure for evaluating a
definite integral by antidifferentiation. This procedure is embodied in the
Fundamental Theorem of Calculus (FTC).

Before we state this theorem, we introduce the notions of the average value ot a
function and the antiderivative of a function.

Definition 5 Let f be integrable over [a.b]. The average value § of v = {(x)

over [a,b] is

= — jf(x) dx
The tollowmg theorem tells us that every continuous function on a closed mterval
attains its average value at some point of the interval. We shall not give its proof
here.
Theorem 6 (Average Value Theorem) If f: [a.b] > R is continuous, then
b

f(x) = f(X) dx

b_
for some X € [a b].

We shall now define the antldenvatwe of a function.
Definition 6 Let f: [a.b] > R and F: [a bl — R be two functions such that

% (F(x)) = F'(x) =f(x)for each x € ]a,b[. We call F(x) an antiderivative (of
inverse derivative) of f(x). '

’ 3. . . . C 2. E 2
For example, £~ is an antiderivative of x”, .smce% —’%—) = X7

3
— Cus X is an antiderivative of sin x, since ——S {—cos Xx) = sin x.
' X
4 5 . . . 3 .
Is %— X~ an antiderivative of x7 — 2x?

Consider the two functions . f(x) = x? and g(x) = x%+5. Both these are

DR DS . S o .S T S5 S o T s ol TR S LI R . L S




function is not unique. In fact, if F(x) is an antiderivative of f(x), then F(x) + ¢ Definite Integral

is also an antiderivative of f(x). This follows from the fact that L .
The interval [a, b} on which {

M X = —— (F(x)+¢)=1(x). and its antiderivative are
dx (F(x)) dx (Fx)+c)=1(x) defined, so that F' (x) = £(x)
We can also say that any two antiderivatives of a function differ only by a constant. Y x & Ja, b, is implicit in our

Because, if F(x) and G(x) are two antiderivatives of f(x), then discussion here.

F'(x) = G'(x) = f(x). Thatis, [F(x) — G(x)]' = 0.

We have noted in Unit 7 that if the derivative of a function is zero on an interval, then that
function must be a constant. Thus (F(x) - G(x) =c.

Now having defined the average value and the antiderivative, we are in a position
to state the Fundamental Theorem of, Calculus. We shall give this theorem in two
parts.

Theorem 7 (FTC): Let{ : [a, bl - R be a continuous function.

Part 1 If the function F : [a,b] — R is defined by

X

Fx) = | f(t) d, L 3)

a -
then F is an antiderivative of f, that is, F'(x) = f(x) for all x in ]a,b[.
Part 2 If G is an antiderivative of f in ]Ja,b[, then
b b
[ %) dx = G) ] = G(b) - G(a).

Proof of Part 1.

By the definition of derivative, F'(x) = lim F(x+h) ~ F(x)

h
1 x+h 3
= m—h- [! f(t)dt — _[f(t) dr}
x+h

1
= lim— | f(t) dt
fim — f (1) dt,
by the interval union property of definite integrals.
But, by the Average Value Theorem (Theorem 6)

x+h

%f f(t) dt = f(t) for some Tt € {x, x+h].

Therefore, F'(x) = },1_1.1(’, f(t). We know that T € [x,x+h]. This means that as
h — 0, t —» x. Therefore,

F'(x) = lim f(t) = f(x), since f is a continuous function.

Hence, i?;s defined by (3), is an antiderivative of f.

Proof of Part 2

G is given as an antiderivative of f in Ja,b[. Also, as shown in Part 1, F defined
by (3) is an antiderivative of f in Ja,b[. Therefore,

G(x) = F(x) + con ]a,b] for some constant c.

To evaluate ¢, we substitute x = a, and obtain :

¢ = G(a) — F(a) = G(a) — 0 = G(a). ' F@ ={“” =0
Hence G(x) = F(x) + G(a), or

F(x) = G(x) — G(a)

If we put x = b, we get

b

F(b) = f f(x) dx = G(b) — G(a) |

i
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The Fundamental Theorem of Calculus tells us that differentiation and integration
are inverse processes, because Part 1 may be rewritten as

—:—x ( l’ f(t) dt) = f(x), if f is continuous.

That is, if we first integrate the continuous function f with the variable x as the
upper limit of integration and then differentiate with respect to x. the result is the
function f again. So differentiation offsets the effect of integration.

On the other hand, if we assume that G’ is'continuous, then Part 2 of FTC may be
written as

[6 () at = 6(x) - Gla)

Here we can say that if we first differentiate the function G and then integrate the
result from a to x, the result can differ from the original function G(x) only by the
constant G(a). If G is so chosen that G(a) = 0, then integration offsets the effut
of differentiation.

Till now we had evaluated the integrals of some functions by first finding the lowcr
and upper sums. and then taking their supremum and infimum, respectwelv This is
a tedious procedure and we cannot apply it easily to all functions. But now, FTC
gives us an easy method of evaluating definite integrals. We shall illustrate this
through some examples.

3

Example 7 Suppose we want to evaluate f(ux3+h'x+¢) dx.

Since f :x— ax® +.bx +/c is continuous on [2.3]. it is integrable over [23].
G(x) = hx + ¢x is an antiderivative of f(x).

chnw. hy FTC (Pa_rt 2)

; -

f(uxz +bx +c)dx = G(x)]

G(3) - GQ)

(Ya + 9b/2 + 3¢) — (Sw/3 + 2b + 2¢)

= l()% +5b 4o

1

al4

Example 8 Let us evaluate fcnslx dx |
‘nl4 n °

. heZ
$iN2x
j cos2x dx = 5 ]

A 1] ~ 7

sin(a/2) sinQ)
2 T

- . “

it

o |—

. B3
d [ -
Example 9 To cvaluate = f sint dt. we put x~ = u
oUWy

Then
d [ d i
:1—; j“smt dt = a J“ sint (it

d du

= — (| sintdt) —

m (l sint dt) &

ang-;i = 2x. and using ¥TC (Part 1). we get
u : :X’

§ d . .
sintdt = smu = sin x-. Thus. —-j sint dt = 2x. sin x°
du,. dx




Example 9 suggests the following formula.

8(x)

& (10w = €.

If you have followed these examples, you should be able to solve the exercises
below. Remember that the main thing in evaluating a definite integral is to find an
antiderivative of the givep function.

E [E12) The second column in the table below consists of some functions which are
antiderivatives of the functions given in column 1. Match a function with its
antiderivative by pairing appropriate numbers.

n+1 xn+1

we can match x" with-%* ince-
For example, we can matc ni7 Since— 4

‘We shall indicate this by iii) — viii).

is an antiderivative of x"

Function Antiderivative
i) sinx . i) —In cosx
i) cosx ii) Incoshx
i) x" ' iii) sechx ]
v) e iv) —cosx
v) tanx V) sinx -
vi) a vi) Le
vii) tanhx vii) ax
viii) sechx tanhx viii) X
n+l

E E13) Evaluate the following integrals by using FTC.

. . s
a) [ 2xidx by [ (@C+2x+1) dx
1 I
2 7/
¢ fx(x+l)2dx d) f sec” x dx
| 4]
2 /2
e) fx(x2+1)2 dx f) f (x+sin x) dx
0 Zan
i 4
g) f (x — cosx) dx h) fez" dx
0 . )
1 1
<) f sinh x co.h x dx i) j (sinh x ~ cosh x) dx
. v "1

-y
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E E14) Find H‘;— [F(x)] when F(x) is defined by the following definite integrals. Definite Integral

x x2 7
a) f JT+t dt ' b): J Jsint + cost dt
3 0

fl:f . ) x2 :
o [ -2+ 1)a d) [ cost® dt
0 X

x2 - v
e) ft\/l—tQ dt

"

TR

10.5 SUMMARY

In this unit we have covered the following points:

1) A partition P of a closed interval [a,b] is a set {a = xq, X;, X25eeeesXn1s Xn = b}

el b ok e o ar  oar e P



, Integral Calcules 2) A partition P, of [a,b] is finer than a partition P,, if P, 2 P,.

3) If M and m are the suprenfum and the infimum of a bounded function fin [a,b],
then, given any partition P of [a,b], m(b—a) < L (P.,f) = U (P,f) = M(b-a).

4) The lower integral of a bounded function is less than or equal td'its upper integra..

| 5) A bounded furction f is integrable over [a,b]if and ohly if its lower and upper
integrals are equal. In such a situation the lower (or upper) integral is called the

: _ ‘ . b
J definite integral of f over [a,b], denoted by f f(x)dx.
a

6) If f is monotonic or continuous on [a,b], then { is integrable over [a,b].
b

| 7) If fis continuous on [a,b], then ff(x) dx represerits the signed area of the
a
! region bounded by the curve y = f(x), the x-axis and the lines x = a and x = b.

'8) If f is monotonic on [a,b], then

Jian = Li_l_l(l);héf(a £, = lim h§f<a + (i-Dh),

where h = ba
n

9) The Fundamental Theorem of Calculus:
i) If f is continuous on [a,b]; then for x € Ja,b{

d [ .
& {0 & = i

ii) If f is continuous on [a,b] and F'(x) = f(x) for x € Ja,b], then
.

f f(x)dx = F(b) — F(a).

10.6 SOLUTIONS AND ANSWERS

E1l) P, P; N P, are regular.
A x3 = 1/4 in Py, Axy = 1/6in P,.

E2) 2) 0, +,%,1,11,1%, 2
by 2,2-%,32, 4k 4 51 6l 68,73 8. 9

107757 "10° 5
3a+b a+b a+3b
E3) a) P2—(3, 4 ’ 2 L] 4 )b}
7a+b 3a+b Sa+3b
P3 ='{a1 8 ) 4 1 8 . ...,b]
) Axianisb-a
. ) 4
Ax in P3 is g

E4) P* =P  UPr=> P CP: = P>  is a refinement of Py V" n.
E 5) a) f(x) is an increasing function on [0,2]. Hence

~+ .i + 13 . _1 + '.l.

; =2, 13
and U(P’O = 47

1
2
b) f(x) is a decreasing function on [1,4]. Hence -

Len =L+ da+ta

e . UPeH=11+1-1+ 11




U(Plvf)=%"%’+—§—'—%=2_90
4.1,2.1,4 1,11
— 2289
5940
-1.1,4 1,2 1, 4.1
VD=5 %4*9' 35 2+ 1134
- 1691 ‘
3960

L(Py,f) = L(Py, ) = U(P, f) = U(Py, f).
E7) If P = {xg, ...... X} is a partition of {0,1},

L(P.f) = UP.H) = I mAx, = S2Ax, = 25Ax, = 21 = 2

Hencef f(x) dx . J(’f(x) dx = 2.

)

E8) If P = {a = x¢. Xjs «vrenn.o. , X, = b} is any partition of [a,b],

then L(P.f) = Em;; Ax; = ¥ m;, Ax; = L(P.g),
where m; ; = inf {f(x) : x € [x;_;. x;]} and
m;, = inf {g(x) : x € [xi_;, x;[}
and m; ¢ = m,, since f(x) = g(x) for all x.
Similarly, U(P.f) = U(P.g) for all P.
The result follows.
E9) f(x) = 2 is integrable
E 10) a), b), ¢) and g) are integrable as these are continuous.
c), f) are not integrable as they are not bounded.

d), h) are integrable as these are increasing functions.
) ,

| 2

E1l) Jl’(1+x)dx—!‘|_lﬂ)h[2+2+F’+2+—n~+2+i
n—I 1 '
+ .0 +2+ Lh=1
=timlpn+ a2+ +n-1)]
n—()
L R n(n 1) i _i
hm 2+ oz 1= 2+2 3
EI2) i) — iv)
it) — V)
i) —  viii)
iV) - vi)
v) - i)
vi) —._vii)
vii) — i)

viit) — iii)
E 13) a) i;— is an antiderivative of 2x’. Hence
497 81 1

J:ZXde =’ ;—]Iz | 5 5= 40

k . ; / , ,
b) J’(sz-!-zx_,_l) dx - 2% + x2 + .x]
: |

'=18+9+3—(l+1+1)=27—§

QA 4y 1 62 o o T
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lntegnlc;lcinlus o 1 ‘
‘ W4, ) S| = f(Pre?-2)
i) el-e ’
E14) a) /1 + x?
x2 x2 .
b)%[)mtdt =££mt dt.%xx3

" _ e 2
dﬁ-?
0 R ‘ )
=x(1+x2—-1—) O

. 1-x

x2 : ) x

-d d
d Zd — 2 _ 2
)—de;c‘ostvt —-—dx[J(;costdt £costdt]

= 2xcos x* — cos x°

x2 - x2 Jx
e)-g—x(f;,/l—tz dt) = g;[‘[)t\/l—tz dt) — ft‘/l—tz dt]
Jx i 0

=21 -x ——%— 1-x - .

28





