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10.1 INTRODUCTION 

We have seen in Unit 3 of Block 1 that one of the problems which motivated the concept 
of a derivative was a geometrical one - that of finding a tangent to a curve at a point. 
The concept of integration was also similarly motivated by a geometrical problem - 
that of finding the areas of plane regions enclosed by curves. Some recently discovered 
Egyptian manuscripts reveal that the formulas for finding the areas of triangks and 
rectangles were known even in 1800 B.C. Using these one could also find the area of 
any figure bounded by straight line segments. But no method for finding-the area of 
figures bounded by curves had evolved till much later. 

In the third century B.C. Archimedes was successful in rigorously proving the formula 
for the area of a circle. His solution contained the seeds of the present day integral 
calculus. But it was only later, in the seventeenth century, that Newton and Leibniz 
were able to generalise Archimedes' method and also to establish the link between 
differential and integral calculus. The definition of the definite integral of a function, 
which we shall give in this unit was first given by Riemann in 1854.1.n Unit 11, we will 
acquaint you with various methods of integration. 

You have probably studied integration before. But in this unit we shall adopt a new 
approach towards integration. When you have finished the unit, you should be able to 
tie in our treatment with your previous knowledge. 

objectives 

After reading this unit you should be able to 
define and calculate the lower and upper sums of some simple functions defined on 
[a,b], corresponding to a partition of [a,b], 
define the upper and lower integrals of a function, 
define the definite integral of a given function and check whether a given function is 
integrable or not, 
state and prove the Fundamental Theorem of Calculus, 
use the Fundamental Theorem to calculate the definite integral of an integrable 
function. 

' 10.2 PRELIMINARIES 

We have mentioned in the introduction that Archimedes was able to find the formula 
for the area of a circle. For this he approximated a circle by an inscribed regular 
polygon (See Fig. 1 (a)). 

Further, we can see from ~ i ~ .  l(b) that this approximation becomes better and better 
as we increase the number of sides of the polygon. Archimedes also tried to 

.approximate the area of the circle by a number of circumscribed polygons as in 
Fig. l(c). The area of the circle was thus compressed between the inscribed and the 
circumscribed polygons. 
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Fig. I 

We shall follow a similar procedure for finding the area of the shaded region Shown 
Y = f (x) in Fig. 2. We begin with the concept of a partition. 

10.2. l- Partition of a Closed Interval 
Let us consider the closed interval [a,b] R. Then we have the following definition 

X D d f ~ ~ i t i o ~  1 Let ~ g ,  x , ,  x2 ,...., xIF-], X, be numbers in [a,b] such that 

+ 0 
- a = x , < ~ ~ < x , < . . . < x ~ - ~ < x , = b .  

Then the ordered set P = {x,),xl ,x2,..  . . ,x,} is called a of [a,b]. 

I I Example 1 P I  = {0,..114, 112,314, 1)  and P2 = { O ,  113, 112,213, 617, l), bcith are 
partitions of [0,1]. 

FIB. 2 Moreover, 
~yanordtrsdsetwemeanaset.in' P I  U P2 = (0, 114, 113, 112,213, 314,617, 1 )  and PI n P2 = (0, 112, 1) arealso 

the in which its partitions of [O,I]. See Fig. 3 (a). (b). (c) and (d). 
ments occur is fixed. 

A set J iscalled asub-interval of an A partition P ='{xo,xI ,x2... .  . .. .xn) of [a;b] dihdes [a,b] into n closed sub-intervals, 
interval I, if 
i) J is an interval, and [XO,XI], [ x I ~ x z ] * . . . . . . [ x ~ - I .  xn]. 
ii) J ~ I .  . with the n + 1 partitioningpoints as end-points. The interval [x,-, , xi] is called the ith 

sub-interval of the partition. The length of the ith sub-interval, denoted by A x i ,  is 
. defined by 

'A' is read as delta. A x .  I = x. I - x. 1-1-  

I It follows that 

We call partition P regular if every sib-interval has the same I'ength, that is;if xl - xO, 
d2 - x l  ,... . , x, - are all equal. In this case, the length of [a,b], that is b-a, is 
equally divided into h parts, and we get 

- - b-a XI-Xo = xz-XI = ...... - X n - X n - ~  - -. .. n 
Thus, a regular partition.of [a,b] may be written as , 

{a, a + h, a + 2h, .... . , a + nh), where a + nh = b: We shall denote this partition by 
1 

{a + ~h);=() 
F o r P =  11,312, 2,5/2,3,7/2,4), A x ,  = x , -xo=  312 - 1 = 112, A x 2  = x2 - x,  = 
2 - 312 = 112. If you calculate Ax3,  Ax4,  A x s  and Ax,,  you will see that P is a regular 
partition of [1,4]. 



E El)  See Exiinple 1. Whichpartitionsamong PI, P2, P I  U P2 and PI tl P2are regular? 
What are the lengths of the third sub-intervals in P, and in P,? 

1' 

$1 E L2) Write down a regular partit~on for each ut the lulluw~ng mtervals. 

a) [O, 21 with 7 partitioning points. 

b) [2,9] with 11 partitioning points. 

Definition 2 Given two partitions P, and P2 of [a,b], we say that P2 is a refinement of PI  

:.A (or P2 is finer than PI) if P2 3 PI.  

In other words, P2 is a refinement of P I  if each sub-interval of P, is contained in some 
$1; i 
'7. 

sub-interval of P I .  

Example 2 Consider the partitions 
p1 = {i,5/4,3/2,7i4,2), 

P2 = {1,6/5,5/4,3/2, 19/10,2), 

P3 = {1,5/4,3/2,2) 

P, and P2 are both finer than P3, as P, 3 P3 and P2 3 P3. However, neither is 
P, a refinement of P i  nor is P2 a refinement of P I .  

If P, and P2 are partitions of [a,b], then from Definition 2 it follows that 

:i,r i) PI  U P2 is a refinement of both P, and P,. 
;'!I ii) PI  and P2 are both finer than P I  n P,. 

Now, suppose for every n E N we define P, as 
b-a )Ln P,={a+i- 2 n l = o  

This means P, has 2" + 1 elements. We can see that P, is a regular partition, with each Ax, = x, - x,_, 

sub-interval having length = h. 
2" 

&f This means that the length of the sub-intervals corresponding to P,, , is half the length 
,,4 of those corresponding to P,. We can also see that P,, 13 P,. In other words, P,, , 
# 1 is finer than P, (also see E3)). Thus, we have defined a sequence of partitions {P,) of 

[a,b], such that P,, is a refinement of P, for all n. Such a sequence {P,) is called a 
:2 
r ' ,  seqdence of refinements of partitions of [a,b]. 

E E3) From the sequence of partitions {P,) defined above, 
a+b  Pl = {a,7 b}. 

a) Find P2 and P3. 

b) Verify that P3 3 P 2  3 PI. 

c) What are the lengths of the sub-intervals in each of these partitions? 

= a  + i b ~ ! - ( ~ + ( i - l ) b 2 ! }  
2" 2" 

- b-a -- 
2" 



E4) Let {Pdm n- 1 be a sequence of partitions of [a,b] , and let P; = PI, 

E = P1 U P2, P3 = P1 U P2 U PJ, and in general, PE = Pn U PL1. Show that 
{ P ~ } ~ = ,  is a sequence of refinements of [a,b]. 

1 

10.2.3 Upper and Lower Product Sums 
By now, we suppose you are quite familiar with partitions. Here we shall introduce 
the concept of product sums. It is through this that we shall be in a position to 
probe the mwe~ubtle concept of a definite integral in the next section. 

Let f: [a,b] -+ R be a bounded function, and let 1 
I 

P = {xo, xl , xz, . . . . ,xJ be a partition of [a,b] . I ' 
I 

We have defined 1.u.b. (sup- Now for any sub-interval [xi_,, x,], consider the set Si = {f(x) : x € [xi4, 41 1. 
m w n )  and g.1. b. (infimum) of a Since f is a bounded function, Si must be a bounded subset of R. This means, 

rot uf in it has a supremum (or least upper bound) and infimum (or p a t e s t  lower bound). 
Unit-1. We write 

Mi = sup& = sup{f(x) i x t  [ X C ~ , ~ ] } ,  and . 
mi * i d  Si 6 i d  {f(x) : x € [kl, xi]). 

We now define the opper product amn U (P,i) and the lower prwl~ct sum L(P,f) by 

You must have come across this S .notation earlier. But let us state clearly what (1) 
means : 

U(P,f) = M1 (xl - ~ g )  + M2 (x2 - xl) + . . . . + Mn (xn - x ~ - ~ ) ,  and 
L(P,f) = m1 (xl - ~ g )  + m2 (x2 - xl) + .... + mn (x, - x,~). 

Thus, to get U(P,f) we have multiplied the supremum in each sub-interval bf the 
length of that sub-interval, and have taken the sum of all such products. Similarly, 
L(P,£) is obtained by summing the products obtained by multiplying the infimum in 
each sub-interval by the length of that sub-interval. U(P,f) and L(P,f) are also called 
Rlemcurn s m m  after the mathematician George Friedrich Bernhard Riemann . 
Riemann gave a definition of definite integral that, to this day, remains the most convenienl 

G.F.B. Risnuna (1826-1866) and useful one. I 
We started.this unit saying that we wanted to find the area of the shaded region in , t 
Fig. 2. Then what are we doing with partitions, U(P,f) and L(P,f)? Fig. 4 will give I 

you a clue to the path which we are going to follow to achieve our aim. 
1 ' 



Fig. 4(a) and 4(b) give the geometric view of Mi Axi and miAxi as areas of rectangles 
with base Axi and heights Mi and mi, respectively. 

The shaded rectangles in Fig. 4(a) are termed as outer rectangles, while the shaded 
rectangles in Fig. 4(b) are called in.ner rectangles. 

Thus, when f is a non-negative valued function (f(x) 2 0 V x), 

U(P,f) = sum of the areas of outer rectangles as in Fig. 4(a). 

L(P,f) = sum of the areas of inner rectangles as in Fig. 4(b), and 

u(P,@ - L(P,f) = sum of the areas of the shaded rectangles along the graph of 
f in Fig. qc).  

L 
I As you see from Fig. 5, U(P,f) and L(P,f) depend upon the function 

f:[a,b] -+ R (compare Fig, 5(a) and (b) ), and the partition P of [a,b] (compare 
Fig. 5(c) and (d) ). 

mg. s: (a) U(P , f)  where y = x (b) U(P,f) where 9 = x 
(c) U(P,f) when P = {0,1,2,3) (d) UP,f) when P {0,112,1,3/2,2,5/2,3) 

If we denote the area between the curve given by y = f(x), the x-axis, and the 
lines x = a and x = b, (the shaded area in Fig. 2) by A, then it is also quite 
clear from Fig. 4(a) and (b), that L(P,f) 5 A U(P,f). 

The geometric view suggests the following theorem: 

Theorem 1 Let f:[a,b] -, R be a bounded function, and let P be a partition of 
[a,b]. If M and m are the supremum and the infimum off, respectively, in [a,b], 
then 

m(b-a) s L(P,f) 5 U(P,f) 5 M(b-a). If X C Y ,  then 
eupX~supY,oad 
inf X inf Y, Prod Now M = Sup {f(x) : x E [a,b]), and 

aa --.- (st-\ . - - r- - 1 1  11 ---- a m  a m  



~ r l c d c d m  Further, m = inf {f(x) : x c [a,b]), and 

mi = inf {f(x) : x c [x,, , xi]). Thus, m 5 mi. This means 

m ~ m ~ s M , s M  ...... (2) 

Once we have the inequalities (2), we can complete our proof in easy steps. (2) 
implies that 

m Ax, 5 mi Axi 5 Mi Axi c: M a x i  

This implies that if we take the sum over i=l ,  2 ,....., n, we get - 
n n 

m 2 Axi s L(P.0 c U(P.0 M 2 Ax, 
i=l i = l  

* m(b-a). d L(P,f) S U(P,f) S M(b-a), 

n 

since 2 Axi = the sum .of the lengths of all sub-intervals 
i=l  

= the length of [a,b] 
= b-a. 

Fig. 6 will help you understand this theorem better. Let us verify this theorem in 
the case of a given function. 

Example 3 Let f:[1,2] + R be a function defined by f(x) = x2. and let 
P = {1,5/4,3/2,5/3, 2) be a partition of [1,2]. .The sub-intervals associated with 
P are [I,  5/41, [5/4, 3/21, [3/2, 5/31 and [5/3, 21. 

The function f is a bounded function on [1,2]. In fact. the image set of f is 
[1,4], which is obviously bounded. 

ne. 7 
,- 

Since f is an increasing function on each sub-interval (see Fig. 7) the supremum 
of f in [xi_,, xi] will be attained at xi and the infimum will be attained at x,,. 

That is, 

Mi = f(xi) and 

m, = f(x,,). Therefore, we can write 

U(P,f) = Z Mi Axi = z f(xi) Axi = s X: (x,-x~-I) 

= $ ( X I - 3  + d &-XI) + 6 (~3-x;) + 4 (&-~3) 



Now, the supremum of f(x) in [1,2] = M = f(2) = 2'-= 4, and 
the infimum = m = f(1) = 1. Thus, 
M(b-a) = (4) (2-1) = 4, and m(b-a) = (1) (2-1) = 1. Thus, 

:;I m(b-a) 5 L(P,f) 5 U(P,f) 5 M(b-a). 

We have noted that the upper and lower product sums depend on the partition of 

Y the given interval. Here we have a theorem which gives us a relation between the 
lower and upper sums corresponding to two partitions of an interval. 

Theorem 2 Let f:[a,b] + R be a bounded function, and let P1 and P2 be 

i partitioris of [a,b]. If P2 is finir than PI, then 
t L(P,,f) 5 L(P2,f) 5 U(P2,f) 5 U(Pl,f). 

Pro& For proving this theorem we look at Fig. 8(a) and (b). 
Let PI = {xO, XI, x2 ,...., x,) and P2 = {x0, vl, x1,x2 ,....., x,) be two partitions of 
[a,b]. P2 contains one element more than PI, namely, vl. 
 heref fore, P2 is finer than P,. 
In fact, P2 can be rightly called a simple refinement of PI. We shall prove the 
theorem for this simple refinement here. 
PI divides [a,b] into n sub-intervals : 

[xo, XI], [XI, xzI,.....,[x,+1, ~ " 1 .  

Fig. 8 

Fig. 8(a) clearly shows that L(Pl,f) 5 L(P2,f) (by an amount represented by the 
area of the shaded rectangle). 
Similarly, Fig 8(b) shows that- U(P2,f) s U(P,,f). 
Since L(P,;f) 5 U(P,,f), the conclusion of the theorem follows in this case. 

Now if P2 is not a simple refinement of PI ,  then suppose P2 has m elements 

more than P,. Then we can find (m-1) partitions P;, P;, P;, ......., r1 
such that 

C 

P, c pi c c P), c . . . . . c py: c p2 and each partition in this sequence is a 

simple refinement of the previous one. 



~ n t c g d  C d d m  Theorem 2 then holds for each pair of successive refinements, and we get 

L(Pl,f) 5 L(P$,~) L(@,f) 5 ....... I. L(PT',~) I L(P2,f) and 

U(P2,f) 5 u(pT1,f) 5 ....... 5 u(P$,~) 5 u(P:,~) sU(P1,f) 

Thus, L(P1,f) = L(P2,f) 5 U(P2,f) 5 U(P1,f). 

From Theorem 2 we conclude the following : 
Let f:[a,b] + R be a continuous and non-negative valued.function, and let 
{P,JL1 be a sequence of refinements of [a,b]. 

Then we have 

L(P,,f) 5 L(P2,f) 5 ....... 5 L(Pn,f) = ...... s A s.:.c. .g U(Pn,f) 5 ...... 5 
U(P2,f) 5 U(Pl,f), where A is the area bounded by the curve, the x-axis and the 
lines x = a and x = b. 

E ES) Find the upper product sum and the lower product sum of the function f 

relative to the partition P, when 

a) f(x) = 1 + x2, P = (0, 112, 1, 312, 2) 

b) f(x) = llx, P = (1, 2, 3, 4) 
* 

E E6) Verify Theorem 2 for the function f(x) = llx, 2 C x 5 3, and the partitions 
PI = (2, 512, 3) and P2 = (2, 914, 512, 1114, 3) of [2,3]. 



In this sub-section we have seen that the area A in Fig. 2 can be approximated by 
means of the lower and upper sums corresponding to some partition of [a&]. 
Further, Theorem 2 tells us that as we go on refining our partition, the lower and 
upper sums approach A from both sides. The lower sums underestimate 
A (L(P,f) I A), while the upper sums overestimate A (U(P,f) r A). Let us go a 
step further in the next sub-section, and define lower and upper integrals. 

10.2.3 Upper and Lower Integrals 
Let f:[a,b] + R be a n~n~negative bounded function. Then to each partition P 
of [a,b], there correspond the upper product sum U(P,f) and the lower product 
sum L(P,f). 

Let P be the set of all partitions of [a,b]. Then the set u = {U(P,f) : P e P) 
R ~ ( ~  nit ,)aatCveryICtWhich is a subset of R and is bounded below since A s U(P,f) 4 P e P. Thus, it is is h.udd bDla hrn smum, 

possible to find the infimum of u. and every set which is bounded 
above has a supremum. 

Similarly, the set u' = {L(P,f) : P E P} is bounded above, since L(P,f) s A 4 P E P. 
Hence we can find the supremum of u'. The infimum of u and the supremum of 

'u '  are given special names as you will see from this definition. 

Defiiition 3 If a function f is defined on [a,b] and if P denotes the set of all 
partitions of [a,b], then infimum of {U(P,f) : P E P) is called the upper integral of f 

-b 
on [a,b], and is denoted by /f(x) dx. The symbol arb read as integral. 

a 

' t 
XI , The supremum of {L(P,f) : P E P)  is called the lower integral of f on [a,b], and is 

denoted by % f(x) dx. 
- 

-b 
From Theorem 2 it follows that / f(x) dx r A and [ f(x) dx I A. - 

-b 

Thus we have [ f(x) dx s A s 1 f(xj dx. - 
1 

Example 4 Let us find l1 f(x) dx and f(x) dx. . 
- 

j: 
+ -1 0 if x is rational 

for the function f, defined by f(x) = 
1 if x is irrational. 

I * + 
Suppose P= {xo, xl, xz ,....., x,) is a partition of [0,1]. 

+ Each sub-interval [xi-l, xi] contains both rational and irrational numbers. This 

means, Mi = 1 and mi = 0 for each i. 

24 and 

Since P was any arbitrary partition of [0,1], this means that 

U(P,f) = 1 and L(P,f) = 0 4 P E P. 

. Thus, u = {U(P,f) : P E P)  = (1) 

::rt and u = {L(P,f) : P E P)  = (0) 
:.I - 4 Hence inf u = 1 and sup u' = 0. That is, 

d f(x) dx = 1 and jo f(x) dx = 0. - 
See if you can do these exercises now. 



Integral Calculus 
1 

E E7) Find [ f(x) dx and b f(x) dx. for the function f defined as 
- 

E8) If the functions f and g are  bounded non-negative valued functions in [a.b] 

and if f(x) 5 g(xi in ,a,b], prove that ( flx)dx Lfg(x)dx a.1 
a 

h I) 

f(x) dx j r(x) dx. 

10.3 DEFINITE INTEGRAL -- 

In the  last section we had restricted our  discussion t o  non-negative valued function\. 
But we can easily extend our  definitions of L(P,f), U(P,f) and the lower and upper 
integrals t o  all bounded functions, However, we shall have t o  modify our 
internretatinn nf these wms a1 areas Fnr this ntlmnse we introduce the conrent 



of signed area. If R is any region, its signed area is defined to be the area of its Definite Integral 

Fig. 9 

With this definition then, we can interpret L(P,f) as the signed area of a polygon 
inscribed inside the given region, and U(P,f) as the signed area of a polygon 
circumscribed about the region. Thus, for any bounded function on a closed interval 

b 

[a,b]. we can define la f(x) dx = sup {L(P.f) : p r P), and 
- 

Now we are in a position to discuss the definite integral for a bounded function on 
a closed interval. (The adjective 'definite' anticipates the study of indefinite integral 
later). 

Definition 4 Let f:[a,b] -+ R be a bounded function. f is said to be integrable 
over [a,b] if, and only if, 

This common value is called the definite integral of f over the interval of 

h 

integration [a,b]. and is denoted by 1 f(x) d r  
I 

In this notation for the definite integral, f(x) is called the integrand, a is called 
the lower limit and b is called the upper limit of integration. 

The symbol dx following f(x) indicates the independent variable. Here x is merely 
a dummy variable, and we may replace it by t or v ,  or any other letter. This 
means, 

The symbol I reminds us of S which is appropriate. because a definite integral is. 

in some sense, the limit of a sum. In fact i t  is the common value (when it exists) 
of the lower and upper integrals which are themselves infimum and supremum sums. 

The use of f(x) dx reminds us that we do not take the sum of function values, 
rather we take the sum of terms. each of which is the product of the supremum or 
infimum of the function in an interval multiplied by the length of the sub-interval. 

The definition of definite integral above, applies only if a < b, but it would be 
appropriate to include the cases a = b and a > b as well. In such cases we define 

ff(x) dx = O 
L 

h a 

and f(x) dx = -1 f(x) dx 
'I b 

provided the right hand integral exists. 



~ntqp-.I c8bhn In Example 4, we have seen that if 

I 0 if x is rational 
f(x) = 

1 if x is irrational, then 

1 I, i(x) dx = 0, and [ f(x) dx = 1. 

Since the lower and upper integrals for this function are not equal, we conclude 
that it is not integrable. 

E E9) Check whether the function given in E7) is integrable or not. 

~t Now we shall list some basic properties of definite integrals. 

I I Intqp1 of a constant function f(x) = c 

jcdr = ~ ( b - ~ )  . 
a 

This is intuitively obvious since the area represented by tha integral is 
simply a rectangle with base b-a and height c, (see Fig 10.). 

Now let us consider a function f which is integrable over [a, b]. 

I1 Constant Multiple Property 

I k f(x) dx = k 1 f(x) dx. 
a a 

I11 Interval Union Property 

b c b .  

If a < c < b, then /f(x) dx = /f(x) dx + /t(x) dx 
a a c 

Its geometrical interpretation is shown in Fig. l l (a) .  

0.9 
Fig. 11 

IV Compruison Propeity 
If c and d are constants such that c I f(x) I d for all x in [a,b], then 

b 

c(b-a) I lf(x) dx 5 d(b-a) 



Fig. l l ( b )  makes this statement clearer. Note that c and ,d are not necessarily the 
minimum and maximum values of f(x) on [a,b]. c may be less than the minimum, 
and d may be greater than the maximum. 

Definite Integrql 

The following theqrep given a criterion for a function to b e  integrable. 

Theorem 3 A bounded function f is integrable over [a,b] 'if and only if, for every 
E > 0, thcre exists a partition P of [a,b] such that 0 5 U(P,f) - L(P,f) < e .  

Proof : We know that for any partition P of [a,b], 

If the function f has the property that for every E > 0 there exists a partition 
P of [a,b] such that 

U(P,f) - L(P,f) < E, we conclude that 

- 
b b 

0 5 1 f(x) dx - 6 f(x) dx < E for every E > 0. 
d - 

b 
From this it follows that j f(x) dx - [ f(x) dx = 0 and hence f is integrable over 

tab] .  
- 

On the other hand, if f is integrable over [a,b], 

jb f(x) dx = SUP {L(P,f) : P E P} = inf {U(P,f) : P E P}. Thus. for every E > 0 
a 

we can find partitions P' and P" of [a,b], such that. 

b b 

0 5 1 f(x) dx - L ( I  ,f) < ED, and 0 s U(P".f) - 1 f (x) dx < ED (see Sec. 2 of 
I 

Unit 1). 

Taking some partition P which is finer than both P' and P ,  and adding the two 
inequalities, we have 

0 5 U(P,f) - L(P,f) < E.  

This completes the proof. 

Now arises a natural question : Which are the functions which satisfy the above 
criterion? The following theorems provide a? answer. 

Theorem 4 A function that is monotonic (increasing or decreasing) on [a,b], 
is integrable over [a,b]. 

Proof Let the function f:[a,b] + R be increasing. Then 

x, < x, =%- f(x,) 5 f(x2). 
b - a  For each-positive integer n, let Pn = {a, a+h ,.. . . , a+nh = b}, where h = - be a 

n regular partition of [a,b]. h e n  

since the supremum of f(x) in [a+(i-1) h, a+ih] is f(a+ih). 
n n 

and L(Pn,f) = h 2 ml = b-a f(a+(i-1)h) 
I =  I i = l  



b-a E 
+ h =  - < 

r n f (b)-f (a) 

Therefore 

U(Pn,f) - L(Pn,f) = b-a [f(a+h) + f(a+2h) + .... + f(a+nh) n 
-f(a) - f(a+h) .... f(a+(n-l)h)] 

--  - b-a [f(a+nh) - f(a)] 
n 

Let E > 0. Can we choose an n which will make U(Pn,f) - L(Pn,f) < E ? 

Yes, we can. Try some n > (b-a) - f(a)l . If we substitute this value of .n  
E 

in Ill ,  we get 

, - . .  
Thus, applying  heo or em 3, we can conclude that f is integrable. 

Theorem 4 leads us to the following useful result. 

Corollary 1 If f is increasing or decreasing on [a,b], then 

1 f(x) dx = lim h[f(a) + f(a+h) + .... + f(a+(n-l)h)] 
1 'h-0 

= lim h[f(a+h) + f (a+2h) + ..... + f(a+nh)], where h = b-a .' n 
b 0  

We shall illustrate the usefulness of Corollary 1 through some examples. But before 
that we state another theorem, which identifies one more class of integrable 
functions. 
Theorem 5 If a function f:[a,b] + R is continuous, then f is integrable. 

.The proof of this theorem is beyond the scope of this course. We shall prove it in 
a later course on real analysis. 
In Sec. 5 in Unit 3, we have; seen that differentiability implies continuity. Now we 
can write 
differentiability -s- continuity integrability 
Now, let us evaluate some definite integrals with the help of Corollary 1. 

b 

Example 5 To  evaluate 1 cosx dx, 0 5 a 5 b c n12, we observe that 
I 

f ; x + cosx is a decreasing function on [a,b]. Therefore, by Corollary 1 

/COsx dx = lim h[cos(a+h) + cos(af2h) + . . .  + cor(a+nh)], a+nh = b. 
I h-.O 

Now 

2 sin (hl2) [cos(a+ h) + cos(a+2h) + . . . . + cos(a+nh)] 

= 2 sin (hi2) cos(a+ h) + 2sin (h/2) cos (a+2h) + .... . f 2 sin.(h/2) cos (a+nh). 
3h h 5h 3h = [sin(a+-) - s in(a+-) I .+  [ s i n ( a +  -) - ~ i n ( a + ~ ) ]  + .... + 2 2 2 

2n+ 1 
[sin (a+(- 2 

2n-' ) h)] ) h) - sin (a+(- 
2 

.2n+ 1 
= sin (a+(- 

h 
) h) - sin (a+ -) 2 2 

h 
= sin (b+ - ) 7 sin (a + p), since a + nh = b 

2 

* cos(a+h) + cos(a+2h) + .... + cos(a+nh) = 
sin (b+h/2) - sin (a+h/2) 

2 sin h/2 

Thus, 

h h 
cosx dx = lim [sin (b + - ) - sin (a + - ) ]  

h/2 
h-o 2 2 sin (h/2) 

= sin b - sin a .  



L 

Example 6 Suppose we want to evaluate 

Here, f : x + x + xZ is an increasing function on [1,2]. 

Therefore, 
2 - / (x+x2) dx = lirn h f ;  f(l + ih), h = lln 

h-0 ,=, 
n 

= lirn h [(l+ih) + (l+ih)*] 
b 0  i=l  

' n 

= lim h 2 (2 + 3hi + h2 i2) 
i=l 

n n 

= lirn [Zh 2 1 + 3h2 2 i + h3 iZ] 
b.0  i= l  , i = l  i = l  

= lim [2nh +* h b ( n + l )  + h3n(n+l) (2n+l)]  
h-0 

= lim [2 + $ ( l  + h) +* ( l+h)  (2+h)]. since nh = 1. 
h 4 0  

In this section we have noted that a continuous function is integrable. We have also 
proved that a monotone function is integrable. Corollary 1 gives us a method of 
finding the integral of a monotone function. One condition which is very essential 
for the integrability of a function in an interval, is its boundness in that interval. If 
a function is unbounded, it cannot be integrable. In fact, if a function is not 
bounded, we cannot talk of M, or m,, and thus cannot form the upper or lower 
product sums. Now on the basis of the criteria discussed in this section you should 
be able to solve this exercise. 

E10) State whether or not each of the following functions is integrable in the giyen 
interval. Give reasons for each answer. 

a) f(x) = x2 - 2x + 2 in [-1,5j 

b) f(x) = fi in [l ,a] 

c) f(x) = l/x in [-1,1] 

d) f(x) = [x] in [0,4] 

e) f(x) = (x-11 in [0,3] 

X' + in [-4,0] f) f(x) = - 2x + 1 
x +  1 whenx<O 

in [-1,1] 
1 - x when x 2 0, 

x + l w h e n x < l  
h) f(x) = in [0,3] 2x + 1 when x L 1, 

I - 

\ 

Recall that 



Intugral Calculus E E l l )  Use Corollary 1 to evaluate the following definite integral. 

(I +x) dx 

10.4 FUNDAMENTAL THEOREM OF CALCULUS -- 

As you have already read in the introduction, the basic concepts of definite 
integral were used by the ancient Greeks, mainly Archimedes (287-212 B.C.), do re  
than 2000 years ago. This was long before calculus was invented. But in the 
seventeenth century Newton and Leibniz developed a procedure for evaluating a 
definite integral by antidifferentlation. This procedure is embodied in the 
Fundamental Theorem of Calculus (FTC).  

Before we state this theorem, we introduce the notions of the average value ot A 
function and the antiderivative of a function. 

Definition 5 Let f be integrable over [:i.b]. The average value of y =: f ( x )  
over [a,b] is 

h 

The following theorem tells us that every continuous function on a closed interval 
attains its average value at some point of the interval. We shall not give its proof 
here. 

Theorem 6 (Average Value Theorem) I f  f : [ i~,bl  -t R is continuous, then 

1 
f(X) = - f(x) dx 

b-a ;, 
for some % E [a,b]. 

We shall now dcfinc the antiderivative of a function. 
Definition 6 Let f : [a.b] + R and F : [a,bl + R be two functions such that 
d - (F(x)) = Ff (x)  = f(x)for each x E ]a,b[. We call F(x) an antiderivative (or 
dx 
inyerse derivative) of f ( x ) .  

3 .  
~ l ; r  example, 2- IS :in iintiderivative of x 2 ,  s i n c e L ( 2 )  = x'; 3 dx 3 

d - cds x is an antiderivative of sin x, since - (-cos x) = sin x. 
xJ 

dx 
Is -- x- an antidcrivativc of x" - 2x6? 

4 

Consider the two functions f(x) = x2 and g(x) = x2+5. Both these are 
. . . C C . .  . 1 . .  1.. TI.:.. AL-. --a:>--:..-.*:..- - c -  



function is not unique. In fact, if F(x) is an antiderivative of f(x), then F(x) + c Dellnlte Integral 

is also an antiderivative of f(x). This follows from the fact that 
d d 

The interval [a, b] on which f 
- (F(x)) = - (F(x)+c)=~(x). and its antiderivative are 
dx dx defined, so that F (x) = f(x) 
We can also say that any two antiderivatives of a function differ only by a constant. v x E la, b[, 1s irnplici~ in our 

diseussiar here. Because, if F(x) and G(x) are two antiderivatives of f(x), then 

Ff(x) = Gf(x) = f(x). That is, [F(x) - G(x)]' = 0. 
We have noted in Unit 7 that if the derivative of a function is zero on an interval. then that 
function must be a constant. Thus (F(x) - G(x) = c. 

Now having defined the average value and the antiderivative, we are in a position 
to state the Fundamental Theorem of Calculus. We shall give this theorem in two 
parts. 

i Theorem 7 (FTC) : Let f : [a, bl -+ R be a continuous function. 
Part 1 If the function F : [a,b] i, R is defined by r r X 

F(x) = ) f(t) dt, .... .(3) 
a 

then F is an antiderivative of f, that is, Ff(x) = f(x) for all x in ]a,b[. 

Part 2 If G is an antiderivative of f in ]a,b[, then 

Proof of Part 1. 

By the definition of derivative, F1(x) = lim 
F(x+h) - F(x) 

h-ro h 

by the interval union property of definite integrals. 
But, by the Average Value Theorem (Theorem 6) 

1 f(t) dt = f(i) for some T E [x;.x+h]. 
h x 

Therefore, F1(x) = lim f(i). We know that i E [x,x+h]. This means that as 
h-80 

h + 0, i + x. Therefore, 

F1(x) =Jim f(i) = f(x), since f is a continuous function. 
t+x 

Hence, F as defined' by (3),  is an antiderivaiive of f. 

Proof of Part 2 
G is given as an antiderivative of f in ]a,b[. Also, as shown in Part 1, F defined 
by (3) is an antiderivative of f in ]a,b[. Therefore, 

G(x) = .F(x) + c on ]a,b[ for some constant c. 

To evaluate c, we substitute x = a, and obtain 

c = G(a) - F(a) = G(a) - 0 = G(a). 

Hence G(x) = F(x) + G(a), or 

F(x) = G(x) - G(a) 

If we put x = b, we get 



The Fundamental Theorem of Calculus tells us that differcnt~i~t~on and intcgri~tion 
are inverse processes, because Part 1 may be rewritten as 

X 

(1 f(t) dt) = f(x), if f is continuous. 
dx n - 
That is, if we first integrate the continuous function f with the variable x as the 
upper'limit of integration and then differentiaie with respect to x ,  the result is the 
function f Gain. So differentiation offsets the effect of integration. 

On the other hand, if we assume that G' is'continuous, then Part 2 of FTC may be 
written as 

' jot (1) dt = G(x) - C(a) 
1 

Here we can say that if we first differentiate thebfunctim G and then integrate the 
resulx from a to x,  the result can differ from the originttl function G(x) only by the 
constant G(a). If G is so chosen that G(a) = 0, then integration offsets the effect 
of biffere@i&n. 

Till now vvs b?d evaluated the integralsof iome functions by first finding the lowcr 
and upper sums. and then taking their suprcrnum and infimum, respectively. This is 
a tedious prucedure and we cannot apply it easily to ail functionSs. But 'irow. FTC 
gives us an easy method of evaluating definite integrals. We shall illustrare this 
through some examples. 

'. 
Since f :x+ ax' +.bx +/c is continuous on 12.31. it is integrable over [2,3) 

G(x) = + + cx is an ilntiderivi~tivu of f(,x). 3 
Hcncc. by FTC (Part 1) 
.3 

= G(3) - G(2) 

= (Oa + 9b/2 + .k) - (Kid3 + 2h + 'c) 
= It)" + 5k + , 

3 - 
alJ 

E u m P  8 Let us uvi~lu;ltc / c t r l r  dx a 

Then . 
x-  

d d - 
- J'sint dt = - J sill1 tit 
dx ,, dx ,, 



Example 9 suggests the following formula. 

If you have followed these examples, you should be able to solve the exercises 
below. Remember that the main thing in evaluating a definite integral is to find an 
antiderivative of the givep function. 

E E12) The second column in the table below consists of some functions which are 
antiderivatives of the functions given in column 1. Match a function with its 
antiderivative by pairing appropriate numbers. 

Xn+ 1 ~ n + l  . 
For example, we can match xn with- n +  since.- IS an antiderivative of xn 

n + l  
,We shall indica'te this by iii) + viii). 

iii) xn 

iv) eax 

Function 

i) sinx 

ii) cosx 

iii) sechx 

iv) -cosx 

Antiderivative 

i) - In cosx 

ii) In coshx 

1 v) tanx 1 ) sinx 1 
vii) tanh x 

viii) sechx tanhx 

vii) ax 
Xnf l 

viii) - 
n+ 1 

E13) Evaluate the following integrals by using FTC. 

j) !, (sinh x - cmh x) dx 





E E14) Find -& [F(x)] when F(x) is defined by thc following definite integrals. 

In .this unit we have covered the following points: 

1) A partition P of a closed interval [a,b] is'a set {a = XO, XI, x2 ,,..., x,,, x, = b) 
L . L - A - .  /-.  /.. / / - -  



2) A partition PI of [a,b] is finer than a partition P,, if PI 2 P2. 

3) If M and m are the supremum and the infimum of a bounded function f in  [a,b], 
then, given any partition P of [a,b], m(b-a) I L (P,f) a U (P,f) 5 M(b-a). 

4) The lower integral of a bounded function ik less than or equal t&ts upper integral. 

5) A bounded function f is integrable over [a,q.if and only if its lower and upper 
integrals are equal, In such a situation the lower (or upper) integral is called the 

b 

definite integral off over [a,b], denoted by 1 f (a) dx. 
a 

6) If f is monotonic or  continuous on [a,b], then f is integrable over [a,b]. 
b 

7) If f is continuous on [a,b], then /f(x) dx represents the signed area of the 
a 

region bounded by the curve y = f(x), the x-axis and the lines x = a and x = b. 

8) If f is monotonic on [a,b], then 

b 

.lf(x)dx = lim h 2 f(a + ih), = lim h $f(a + (i-l)h), 
a b 0  i=1 L O  

b-a where h = - 
n 

9) The Fundamental Theorem of Calculus: 
i) If f is continuous on [a,b]; then for x E ]a,b[ 

x 
d - ( 1  f(t) dt) = ~ x )  
dx .a 

ii) If f is continuous on [a,b] and F'(x) = f(x) for x ]qbl, then 

ff(x)dx = F(b) - F(a). 

-- 

10.6 SOLUTIONS AND ANSWERS 

E 1) PI,  P, n P2 are regular. 
A x3 = 114 in PI, Ax3 = 116 in P2. 

1 2  1 2  E 2 )  a) ~ o , ~ , T , l , 1 3 , 1 T , 2 }  

7 2 1 4 1 1 9 3 3  b) {2,2-,3-,4-,4T,5T, &,6- 7-,8-, 9) 10 5 10 5 10 ' 5 10 
3 a + b  a + b  a + 3 b  

E3)  a) P2 = (a,---- - --- , b) 4 2 4  
7 a + b  3 a +  b 5 a + 3 b  

P3 = { a , g ,  - . - , ..., bl 

b - a  
c) Ax in P2 is- 4 * 

b - a  
Ax in Pg is- 8 '  

E 4) P,*+ = Pn+, U P; =3 P; c Pz+ + P:+, is a refinement of P,' 4 n. 

E 5) a) f(x) is an increasing function on [0,2]. Hence 

5 1 1 1 3 . 1 + 5 . -  1 and U(P,f) = - - -t 2.- 
4 2 2 ' 4  2 2 

b) f(x) is a decreasing function on [1,4]. Hence 
1 1 1 L(P,f) = -.1 + - .1  + -.1 
2 3 4 

1 1 U(P,f) = 1.1 +7.1 + 



i 
I U(P,,f) =1.1+ 2:1= 9 
; 

2 2  5 2  20 

2 1  4 1  1 1  L(P2, f) = 4.1 + - . - + - . - + - . - 
9 4  5 4  1 1 4  3 4  

- 2289 -- 
5940 

1 1  u ( p 2 , f ) = - . - + 4 . 1 + 2 .  1+4.1 
2 4  9 4  5 4 1 1 4  

- 1691 -- 
3960 

L(P1,f) 5 L(P2, f )  5 U(P2, f )  5 U(P1, f ) .  

E 7) If P = {xo, ......, x,} is a partition of {0,1), 
L(P,f) = U(P.f) = Z m,Ax, = 22Ax, = 22Ax, = 2-1 = 2 

I * - 
I 

Hence 1, f(x) dx = [ f(x) dx = 2. 
- 

E 8 )  I f P =  {a = x,,.x,. ........., x, = b} is any partition of [ ah ] ,  

then L(P,f) = Zmi.f Axi 5 2 mi, Axi = L(P,g),' 

where mi.f = inf {f(x) : x E [xi-,. xi]} and 

mi, = inf {g(x) : x E [xi-,. xiD 

and mi., 5 mi., since f(x) 5 g(x) for all x. 

Similarly, U(P.f) i U(P.g) for all 1'. 

The result follows. 

E 9) f(x) = 2 is integrable 

E 10) 4, b), e)  and g) are integrable as these are continuous. 

c), f) are not integrable as they are not bounded. 

d), h) are integrable as these are increasing functions. 
2 

I 2 3 E l l )  I ( l + x ) d x = l i m  h [ 2 + 2 +  , + 2 +  B + 2 + T  
I 11-0 

1 1 = lim Ti [2n +.Ti ( I  + 2 + ....... + n-I)] ' 

n-41 

E 12) i )  + iv) 
ii) + v) 
iii) + viii) 
iv) + vi) 
v) + i) 
vi) + _vii) 
vii) + ii) 
viii) + iii) 

E 13) a) * is an  antiderivative of 2x3. Hence 
2 



1 Integral Cskulw 

xz xz 
dx2 

b) $ j j-tdt = j j-t dt.= 
o dx2 o 

- 
d d 

d) - I cos t2dt = - [ I cos t2dt - I cos t2dt] 
dx x dx 0 0 

= 2xcos x4 - COS x2 

xz . xz J;- 
d 

e)  ( I t  J- dt) = dx [I t J F F  dt) - I t Jn dt] 
dx - 0 0 




